Mostrar el registro sencillo del ítem

dc.contributor.authorGarrido Arévalo, Augusto Rafael
dc.contributor.authorAgudelo-Otálora, Luis Mauricio
dc.contributor.authorObregón-Neira, Nelson
dc.contributor.authorGarrido Arévalo, Víctor Manuel
dc.contributor.authorQuiñones-Bolaños, Edgar Eduardo
dc.contributor.authorNaraei, Parisa
dc.contributor.authorMehrvar, Mehrab
dc.contributor.authorBustillo-Lecompte, Ciro Fernando
dc.coverage.spatialCartagena de Indias
dc.date.accessioned2020-08-31T18:25:15Z
dc.date.available2020-08-31T18:25:15Z
dc.date.issued2020-07-12
dc.date.submitted2020-08-31
dc.identifier.citationGarrido-Arévalo, A.R.; Agudelo-Otálora, L.M.; Obregón-Neira, N.; Garrido-Arévalo, V.; Quiñones-Bolaños, E.E.; Naraei, P.; Mehrvar, M.; Bustillo-Lecompte, C.F. Application of Artificial Neural Network and Information Entropy Theory to Assess Rainfall Station Distribution: A Case Study from Colombia. Water 2020, 12, 1973.spa
dc.identifier.issn2073-4441
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9351
dc.description.abstractAn assessment of the rainfall station distribution in the mountainous area of the Regional Autonomous Corporation of Cundinamarca (CAR, for its acronym in Spanish), Colombia, was conducted by applying concepts from information entropy and artificial neural networks (ANNs). This study was divided into two phases: first, a classification of the meteorological stations using two-dimensional self-organizing maps; second, the evaluation of the performance of the ANN by applying concepts of information entropy. Three scenarios were raised for the classification of the meteorological stations by adjusting the number of neurons in the output layer. A high number of neurons in the output layer were obtained, causing the model to over-fit while emphasizing differences amid patterns. When comparing the results of the scenarios, the permanence of certain characteristics and features was found in the system, validating the model classification. Subsequently, the results of the first scenario were used to evaluate the entropy of the historical series. Finally, the results show that the area of study presents a lack of information due to the uncertainty associated with the probabilistic arrangement, which can be corrected with the developed model. Consequently, some recommendations for the redesign of the rainfall are providedeng
dc.format.extent18 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.sourceWater; ; Vol. 12 Núm. 7 (2020)spa
dc.titleApplication of artificial neural network and information entropy theory to assess rainfall station distribution: A case study from Colombiaspa
dcterms.bibliographicCitationZoppou, C. Review of urban storm water models. Environ. Model. Softw. 2001, 16, 195–231. [CrossRef]
dcterms.bibliographicCitationDaly, C.; Neilson, R.P.; Phillips, D.L. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol. 1994, 33, 140–158. [CrossRef] Water 2020, 12, 1973 17 of 18
dcterms.bibliographicCitationJohansson, B.; Chen, D. The influence of wind and topography on precipitation distribution in Sweden: Statistical analysis and modelling. Int. J. Climatol. 2003, 23, 1523–1535. [CrossRef]
dcterms.bibliographicCitationLin, G.F.; Chen, L.H. Identification of homogeneous regions for regional frequency analysis using the self-organizing map. J. Hydrol. 2006, 324, 1–9. [CrossRef]
dcterms.bibliographicCitationRojas-Polanco, M.I.; Mora-Mora, L.E. Optimum design of rainfall network. Rev. For. Venez. 2009, 53, 9–22.
dcterms.bibliographicCitationChowdhury, M.; Alouani, A.; Hossain, F. Comparison of ordinary kriging and artificial neural network for spatial mapping of arsenic contamination of groundwater. Stoch. Environ. Res. Risk Assess. 2010, 24, 1–7. [CrossRef]
dcterms.bibliographicCitationChen, Y.C.; Wei, C.; Yeh, H.C. Rainfall network design using kriging and entropy. Hydrol. Process. 2008, 22, 340–346. [CrossRef]
dcterms.bibliographicCitationKarabacak, K.; Cetin, N. Artificial neural networks for controlling wind-PV power systems: A review. Renew. Sustain. Energy Rev. 2014, 29, 804–827. [CrossRef]
dcterms.bibliographicCitationDursun, M.; Özden, S. An efficient improved photovoltaic irrigation system with artificial neural network based modeling of soil moisture distribution—A case study in Turkey. Comput. Electron. Agric. 2014, 102, 120–126. [CrossRef]
dcterms.bibliographicCitationAsimakopoulou, F.E.; Tsekouras, G.J.; Gonos, I.F.; Stathopulos, I.A. Estimation of seasonal variation of ground resistance using Artificial Neural Networks. Electr. Power Syst. Res. 2013, 94, 113–121. [CrossRef]
dcterms.bibliographicCitationAdib, H.; Haghbakhsh, R.; Saidi, M.; Takassi, M.A.; Sharifi, F.; Koolivand, M.; Rahimpour, M.R.; Keshtkari, S. Modeling and optimization of Fischer-Tropsch synthesis in the presence of Co (III)/Al2O3 catalyst using artificial neural networks and genetic algorithm. J. Nat. Gas Sci. Eng. 2013, 10, 14–24. [CrossRef]
dcterms.bibliographicCitationMohajerani, M.; Mehrvar, M.; Ein-Mozaffari, F. Using an external-loop airlift sonophotoreactor to enhance the biodegradability of aqueous sulfadiazine solution. Sep. Purif. Technol. 2012, 90, 173–181. [CrossRef]
dcterms.bibliographicCitationFukushima, K. Artificial vision by multi-layered neural networks: Neocognitron and its advances. Neural Netw. 2013, 37, 103–119. [CrossRef]
dcterms.bibliographicCitationMallela, U.K.; Upadhyay, A. Buckling load prediction of laminated composite stiffened panels subjected to in-plane shear using artificial neural networks. Thin-Walled Struct. 2016, 102, 158–164. [CrossRef]
dcterms.bibliographicCitationTurlapaty, A.C.; Anantharaj, V.G.; Younan, N.H.; Joseph Turk, F. Precipitation data fusion using vector space transformation and artificial neural networks. Pattern Recognit. Lett. 2010, 31, 1184–1200. [CrossRef]
dcterms.bibliographicCitationLiu, Q.J.; Shi, Z.H.; Fang, N.F.; Zhu, H.D.; Ai, L. Modeling the daily suspended sediment concentration in a hyperconcentrated river on the Loess Plateau, China, using the Wavelet-ANN approach. Geomorphology 2013, 186, 181–190. [CrossRef]
dcterms.bibliographicCitationGarrido-Arévalo, A.R.; Agudelo, L.M.; Obregon, N.; Garrido, V.M. Classification of pluviometric networks located in the region of Bogotá, Colombia using artificial neural networks. J. Phys. Conf. Ser. 2020, 1448. [CrossRef]
dcterms.bibliographicCitationKar, A.K.; Lohani, A.K.; Goel, N.K.; Roy, G.P. Rain gauge network design for flood forecasting using multi-criteria decision analysis and clustering techniques in lower Mahanadi river basin, India. J. Hydrol. Reg. Stud. 2015, 4, 313–332. [CrossRef]
dcterms.bibliographicCitationWei, C.; Yeh, H.C.; Chen, Y.C. Spatiotemporal Scaling Effect on Rainfall Network Design Using Entropy. Entropy 2014, 16, 4626–4647. [CrossRef]
dcterms.bibliographicCitationShannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef] 21. Vinod, H.D. Maximum entropy ensembles for time series inference in economics. J. Asian Econ. 2006, 17, 955–978. [CrossRef]
dcterms.bibliographicCitationNoonan, J.P.; Basu, P. On estimation error using maximum entropy density estimates. Kybernetes 2007, 36, 52–64. [CrossRef]
dcterms.bibliographicCitationWeber, T.C. Maximum entropy modeling of mature hardwood forest distribution in four U.S. states. For. Ecol. Manag. 2011, 261, 779–788. [CrossRef]
dcterms.bibliographicCitationPayandeh Najafabadi, A.T.; Hatami, H.; Omidi Najafabadi, M. A maximum-entropy approach to the linear credibility formula. Insur. Math. Econ. 2012, 51, 216–221. [CrossRef]
dcterms.bibliographicCitationAurbacher, J.; Dabbert, S. Generating crop sequences in land-use models using maximum entropy and Markov chains. Agric. Syst. 2011, 104, 470–479. [CrossRef]
dcterms.bibliographicCitationXie, L.; Li, G.; Xiao, M.; Peng, L. Novel classification method for remote sensing images based on information entropy discretization algorithm and vector space model. Comput. Geosci. 2016, 89, 252–259. [CrossRef] Water 2020, 12, 1973 18 of 18
dcterms.bibliographicCitationCalisto Acosta, O.E. River gauging with one velocity point based on the principle of maximum entropy. Ing. Hidráulica Mex. 2002, 17, 5–19.
dcterms.bibliographicCitationDalezios, N.R.; Tyraskis, P.A. Maximum entropy spectra for regional precipitation analysis and forecasting. J. Hydrol. 1989, 109, 25–42. [CrossRef]
dcterms.bibliographicCitationMishra, A.K.; Özger, M.; Singh, V.P. An entropy-based investigation into the variability of precipitation. J. Hydrol. 2009, 370, 139–154. [CrossRef]
dcterms.bibliographicCitationCAR. 2012–2015 Master Plan; Corporacion Autonoma Regional de Cundinamarca (CAR): Bogota, Colombia, 2012.
dcterms.bibliographicCitationHurtado-Montoya, A.F.; Mesa-Sánchez, Ó.J. Reanalysis of monthly precipitation fields in Colombian territory. DYNA 2014, 81, 251–258. [CrossRef]
dcterms.bibliographicCitationCAR. 2016–2019 Master Plan; Corporacion Autonoma Regional de Cundinamarca (CAR): Bogota, Colombia, 2016.
dcterms.bibliographicCitationOAS. Manual for Design, Installation, Operation and Maintenance of Systems of Flood Early Warning and Online Database; The Organization of American States (OAS), Department of Sustainable Development: Washington, DC, USA, 2010.
dcterms.bibliographicCitationWang, W.; Wang, D.; Singh, V.P.; Wang, Y.; Wu, J.; Wang, L.; Zou, X.; Liu, J.; Zou, Y.; He, R. Optimization of rainfall networks using information entropy and temporal variability analysis. J. Hydrol. 2018, 559, 136–155. [CrossRef]
dcterms.bibliographicCitationCAR. SICLICA—Sistema de Información Climatológica e Hidrológica: Valores Totales Mensuales de Precipitación, Máxima en 24 Horas (mm); Corporacion Autonoma Regional de Cundinamarca (CAR): Bogota, Colombia, 2010.
dcterms.bibliographicCitationGonzález-Cuéllar, F.; Obregón-Neira, N. Self-organizing maps of Kohonen as a river clustering tool within the methodology for determining regional ecological flows ELOHA. Ing. Univ. 2013, 17, 311–323.
dcterms.bibliographicCitationHamzehie, M.E.; Fattahi, M.; Najibi, H.; Van der Bruggen, B.; Mazinani, S. Application of artificial neural networks for estimation of solubility of acid gases (H2S and CO2 ) in 32 commonly ionic liquid and amine solutions. J. Nat. Gas Sci. Eng. 2015, 24, 106–114. [CrossRef]
dcterms.bibliographicCitationLohani, A.K.; Kumar, R.; Singh, R.D. Hydrological time series modeling: A comparison between adaptive neuro-fuzzy, neural network and autoregressive techniques. J. Hydrol. 2012, 442, 23–35. [CrossRef]
dcterms.bibliographicCitationChang, T.K.; Talei, A.; Alaghmand, S.; Ooi, M.P.L. Choice of rainfall inputs for event-based rainfall-runoff modeling in a catchment with multiple rainfall stations using data-driven techniques. J. Hydrol. 2017, 545, 100–108. [CrossRef]
dcterms.bibliographicCitationGonzález-álvarez, A.; Viloria-Marimón, O.M.; Coronado-Hernández, O.E.; Vélez-Pereira, A.M.; Tesfagiorgis, K.; Coronado-Hernández, J.R. Isohyetal maps of daily maximum rainfall for different return periods for the Colombian Caribbean Region. Water 2019, 11, 358. [CrossRef]
dcterms.bibliographicCitationElshorbagy, A.; Corzo, G.; Srinivasulu, S.; Solomatine, D.P. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology—Part 1: Concepts and methodology. Hydrol. Earth Syst. Sci. 2010, 14, 1931–1941. [CrossRef]
dcterms.bibliographicCitationFarsadnia, F.; Rostami Kamrood, M.; Moghaddam Nia, A.; Modarres, R.; Bray, M.T.; Han, D.; Sadatinejad, J. Identification of homogeneous regions for regionalization of watersheds by two-level self-organizing feature maps. J. Hydrol. 2014, 509, 387–397. [CrossRef]
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.mdpi.com/2073-4441/12/7/1973
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.3390/w12071973
dc.subject.keywordsHydrologyspa
dc.subject.keywordsRainfall
dc.subject.keywordsArtificial neural networks
dc.subject.keywordsInformation entropy
dc.subject.keywordsClustering process
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAtribución-NoComercial 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio UTBspa
dc.type.spaArtículospa
dc.audienceInvestigadoresspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
dc.publisher.disciplineIngeniería Electrónicaspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.