Mostrar el registro sencillo del ítem

dc.creatorFuertes Miquel, Vicente S.
dc.creatorCoronado Hernández, Óscar Enrique
dc.creatorMora-Meliá D.
dc.creatorIglesias-Rey P.L.
dc.date.accessioned2020-03-26T16:33:03Z
dc.date.available2020-03-26T16:33:03Z
dc.date.issued2019
dc.identifier.citationUrban Water Journal; Vol. 16, Núm. 4; pp. 299-311
dc.identifier.issn1573062X
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9147
dc.description.abstractFilling and emptying processes are common maneuvers while operating, controlling and managing water pipeline systems. Currently, these operations are executed following recommendations from technical manuals and pipe manufacturers; however, these recommendations have a lack of understanding about the behavior of these processes. The application of mathematical models considering transient flows with entrapped air pockets is necessary because a rapid filling operation can cause pressure surges due to air pocket compressions, while an uncontrolled emptying operation can generate troughs of sub-atmospheric pressure caused by air pocket expansion. Depending on pipe and installation conditions, either situation can produce a rupture of pipe systems. Recently, reliable mathematical models have been developed by different researchers. This paper reviews and compares various mathematical models to simulate these processes. Water columns can be analyzed using a rigid water column model, an elastic water model, or 2D/3D CFD models; air–water interfaces using a piston-flow model or more complex models; air pockets through a polytropic model; and air valves using an isentropic nozzle flow or similar approaches. This work can be used as a starting point for planning filling and emptying operations in pressurized pipelines. Uncertainties of mathematical models of two-phases flow concerning to a non-variable friction factor, a polytropic coefficient, an air pocket sizes and an air valve behavior are identified. © 2019, © 2019 Informa UK Limited, trading as Taylor & Francis Group.eng
dc.description.sponsorshipConsejo Nacional de Innovación, Ciencia y Tecnología, CONICYT Comisión Asesora de Investigación Científica y Técnica, CAICYT
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherTaylor and Francis Ltd.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073624938&doi=10.1080%2f1573062X.2019.1669188&partnerID=40&md5=7bb685cea728d54bf8cab7352b6d9b52
dc.titleHydraulic modeling during filling and emptying processes in pressurized pipelines: a literature review
dcterms.bibliographicCitationAbreu, J., Cabrera, E., Izquierdo, J., García-Serra, J., Flow Modeling in Pressurized Systmes Revisited (1999) Journal of Hydraulic Engineering, 125 (11), pp. 1154-1169
dcterms.bibliographicCitationAkpan, P.U., Yeung, H., Jones, S., Njoku, H., Mgbemene, C.A., Mathematical Models of Air Vessels for Pressure Transient Control in Water Pipelines - A Review (2014) International Journal of Current Research, 6 (2). , 5267–5272
dcterms.bibliographicCitationApollonio, C., Balacco, G., Fontana, N., Giugni, M., Marini, G., Piccinni, A.F., Hydraulic Transients Caused by Air Expulsion during Rapid Filling of Undulating Pipelines (2016) Water, 8, pp. 1-12
dcterms.bibliographicCitationArai, K., Yamamoto, K., Transient Analysis of Mixed Free-Surface-Pressurized Flows with Modified Slot Model: Part 1 — Computational Model and Experiment (2003) ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, pp. 2907-2913. , Honolulu, Hawaii
dcterms.bibliographicCitation(2001) American Water Works Association (AWWA). Manual of Water Supply practices–M51: Air-release, Air-vacuum, and Combination Air Valves, , 1st, Denver, ed. Denver, CO, USA
dcterms.bibliographicCitationBaker, A.J., (1983) Finite Element Computational Fluid Mechanics, , New York, NY: Ed. McGraw-Hill
dcterms.bibliographicCitationBalacco, G., Apollonio, C., Piccinni, A.F., Experimental Analysis of Air Valve Behaviour during Hydraulic Transients (2015) Journal of Applied Water Engineering and Research, 3 (1), pp. 3-11
dcterms.bibliographicCitationBeecham, S., Lucke, T., Air Water Flows in Building Drainage Systems (2015) Urban Water Journal, 12 (6)
dcterms.bibliographicCitationBergant, A., Simpson, A.R., Tijsseling, A.S., Water Hammer with Column Separation: A Historical Review (2006) Journal of Fluids and Structures, 22, pp. 135-171
dcterms.bibliographicCitationBesharat, M., Coronado-Hernández, O.E., Fuertes-Miquel, V.S., Viseu, M.T., Ramos, H.M., Backflow Air and Pressure Analysis Im Emptying a Pipeline Containing an Entrapped Air Pocket (2018) Urban Water Journal, 15 (8), pp. 769-779
dcterms.bibliographicCitationBousso, S., Daynou, M., Fuamba, M., Numerical Modeling of Mixed Flows in Storm Water Systems: Critical Review of Literature (2013) Journal of Hydraulic Engineering, 139 (4), pp. 385-396
dcterms.bibliographicCitationBrunone, B., Golia, U.M., Greco, M., Modeling of Fast Transients by Numerical Methods (1991) Proceedings of Hydrualic Transients with Water Column Separation, , Valencia, Spain: IAHR, and,. In
dcterms.bibliographicCitationCabrera, E., Abreu, J., Pérez, R., Vela, A., Influence of Liquid Length Variation in Hydraulic Transients (1992) Journal of Hydraulic Research, 118 (12), pp. 1639-1650
dcterms.bibliographicCitationCarlos, M., Arregui, F.J., Cabrera, E., Palau, C.V., Understanding Air Release through Air Valves (2011) Journal of Hydraulic Engineering, 137 (4), pp. 461-469
dcterms.bibliographicCitationChaudhry, M.H., (2014) Applied Hydraulic Transients. Columbia, , SC, USA: Springer
dcterms.bibliographicCitationChaudhry, M.H., Reddy, H.P., Mathematical Modeling of Lake Tap Flows (2011) Journal of Hydraulic Engineering, 137 (5), pp. 611-614
dcterms.bibliographicCitationCoronado-Hernández, O.E., Transient Phenemona during the Emptying Process of Water in Pressurized Pipelines (2019) PhD diss., , Spain: Department of Hydraulic Engineering, Polytechnic University of Valencia
dcterms.bibliographicCitationCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Angulo-Hernández, F.N., Emptying Operation of Water Supply Networks (2018) Water, 10 (1), pp. 1-11. , 22), and
dcterms.bibliographicCitationCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Experimental and Numerical Analysis of a Water Emptying Pipeline Using Different Air Valves (2017) Water, 9 (2), pp. 1-15. , 98), and
dcterms.bibliographicCitationCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., A Parametric Sensitivity Analysis of Numerically Modelled Piston-type Filling and Emptying of an Inclined Pipeline with an Air Valve (2018) 13th International Conference on Pressure Surges, pp. 949-690. , Bordeaux, France
dcterms.bibliographicCitationCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Besharat, M., Ramos, H.M., Subatmospheric Pressure in a Water Draining Pipeline with an Air Pocket (2018) Urban Water Journal, 15 (4), pp. 346-352
dcterms.bibliographicCitationCoronado-Hernández, O.E., Fuertes-Miquel, V.S., Iglesias-Rey, P.L., Martínez-Solano, F.J., rigid Water Column Model for Simulating the Emptying Process in a Pipeline Using Pressurized Air (2018) Journal of Hydraulic Engineering, 144 (4)
dcterms.bibliographicCitationCovas, D., Stoianov, I., Ramos, H.M., Graham, N., Maksimovic̀, C., Butler, D., Water Hammer in Pressurized Polyethylene Pipes: Conceptualmodel and Experimental Analysis (2010) Urban Water Journal, 1 (2), pp. 177-197
dcterms.bibliographicCitationCunge, J.A., Wegner, M., Numerical Integration of Barre De Saint-Venant’s Flow Equations by Means of Implicit Scheme of Finite Differences (1964) Houille Blanche, 19 (1), pp. 33-39
dcterms.bibliographicCitationFontana, N., Galdiero, E., Giugni, M., Pressure Surges Caused by Air Release in Water Pipelines (2016) Journal of Hydraulic Research, 54 (4), pp. 461-472
dcterms.bibliographicCitationFuertes-Miquel, V.S., Hydraulic Transients with Entrapped Air Pockets (2001) PhD diss., , Department of Hydraulic Engineering, Polytechnic University of Valencia, Spain
dcterms.bibliographicCitationFuertes-Miquel, V.S., Coronado-Hernández, O.E., Iglesias-Rey, P.L., Mora-Melia, D., Transient Phenomena during the Emptying Process of a Single Pipe with Water-air Interaction (2019) Journal of Hydraulic Research, , 57 (3): 318–326
dcterms.bibliographicCitationFuertes-Miquel, V.S., López-Jiménez, P.A., Martínez-Solano, F.J., López-Patiño, G., Numerical Modelling of Pipelines with Air Pockets and Air Valves (2016) Canadian Journal of Civil Engineering, 43 (12), pp. 1052-1061
dcterms.bibliographicCitationGarcía-Todolí, S., Iglesias-Rey, P.L., Mora-Meliá, D., Martínez-Solano, F.J., Fuertes-Miquel, V.S., Computational Determination of Air Valves Capacity Using CFD Techniques (2018) Water, 10 (10)
dcterms.bibliographicCitationGhidaou, M., Karney, B.W., Equivalent Differential Equations In Fixed-Grid Characteristics Method (1994) Journal of Hydraulic Engineering, 120 (10), pp. 1159-1175
dcterms.bibliographicCitationGhidaoui, M.S., On the Fundamental Equations of Water Hammer (2004) Urban Water Journal, 1 (2), pp. 71-83
dcterms.bibliographicCitationGraze, H.R., Megler, V., Hartmann, S., Thermodynamic Behaviour of Entrapped Air in an Air Chamber (1996) Proceedings of the 7th International Conference on Pressure Surges and Fluid Transients in Pipelines and Open Channels, pp. 549-560. , Boldy A.P., (ed), and,. Harrogate, UK, edited by
dcterms.bibliographicCitationGuinot, V., The Discontinuous Profile Method for Simulating Two-phase Flow in Pipes Using the Single Component Approximation (2001) International Journal for Numerical Methods in Fluids, 37 (3), pp. 341-359
dcterms.bibliographicCitationGuinot, V., (2003) Godunov-type Schemes: An Introduction for Engineers, , Amsterdam, The Netherlands: Elsevier
dcterms.bibliographicCitationHamam, M.A., McCorquodale, J.A., Transient Conditions in the Transition from Gravity to Surcharged Sewer Flow (1982) Canadian Journal of Civil Engineering, 9, pp. 189-196
dcterms.bibliographicCitationHou, Q., Tijsseling, A., Laanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., van ’t Westende, J., Experimental Investigation on Rapid Filling of a Large-Scale Pipeline (2014) Journal of Hydraulic Engineering, 140 (11)
dcterms.bibliographicCitationHou, Q., Zhang, L., Tijsseling, A.S., Kruisbrink, A.C.H., Rapid Filling of Pipelines with the SPH Particle Method (2012) Procedia Engineering, 31, pp. 38-43
dcterms.bibliographicCitationIglesias-Rey, P.L., Fuertes-Miquel, V.S., García-Mares, F.J., Martínez-Solano, F.J., Comparative Study of Intake and Exhaust Air Flows of Different Commercial Air Valves (2014) 16th Conference on Water Distribution System Analysis, WDSA 2014, pp. 1412-1419. , Bari, Italy
dcterms.bibliographicCitationIssa, R., Kempf, M., Simulation of Slug Flow in Horizontal and Nearly Horizontal Pipes with the Two-fluid Model (2003) International Journal of Multiphase Flow, 29 (1), pp. 69-95
dcterms.bibliographicCitationIzquierdo, J., Fuertes, V.S., Cabrera, E., Iglesias, P.L., García-Serra, J., Pipeline Start-up with Entrapped Air (1999) Journal of Hydraulic Research, 37 (5), pp. 579-590
dcterms.bibliographicCitationLaanearu, J., Annus, I., Koppel, T., Bergant, A., Vučković, S., Hou, Q., Tijsseling, A.S., Van’t Westende, J.M.C., Emptying of Large-scale Pipeline by Pressurized Air (2012) Journal of Hydraulic Engineering, 138 (12), pp. 1090-1100
dcterms.bibliographicCitationLee, N.H., Effect of Pressurization and Expulsion of Entrapped Air in Pipelines (2005) PhD diss., , School of Civil and Environmental Engineering, Georgia Institute of Technology, USA
dcterms.bibliographicCitationLeon, A., Ghidaoui, M., Schmidt, A., Garcia, M., A Robust Two-equation Model for Transient-mixed Flows (2010) Journal of Hydraulic Research, 48 (1), pp. 44-56
dcterms.bibliographicCitationLi, J., McCorquodale, J.A., Modeling Mixed Flow in Storm Sewers (1999) Journal of Hydraulic Engineering, 125 (11), pp. 1170-1180
dcterms.bibliographicCitationLingireddy, S., Wood, D.J., Zloczower, N., Pressure Surges in Pipeline Systems Resulting from Air Releases (2014) Journal AWWA, 96 (7), p. 88
dcterms.bibliographicCitationLiou, C., Hunt, W.A., Filling of Pipelines with Undulating Elevation Profiles (1996) Journal of Hydraulic Engineering, 122 (10), pp. 534-539
dcterms.bibliographicCitationLiu, D., Zhou, L., Karney, B., Zhang, Q., Ou, C., Rigid-plug Elastic-water Model for Transient Pipe Flow with Entrapped Air Pocket (2011) Journal of Hydraulic Research, 49 (6), pp. 799-803
dcterms.bibliographicCitationLiu, J., Zhang, J., Yu, X., Analytical and Numerical Investigation on the Dynamic Characteristics of Entrapped Air in a Rapid Filling Pipe (2018) Journal of Water Supply: Research and Technology–AQUA, 67 (2), pp. 137-146
dcterms.bibliographicCitationMalekpour, A., Karney, B.W., Rapid Filling Analysis of Pipelines with Undulating Profiles by the Method of Characteristics (2011) ISRN Applied Mathematics, 2011 (Article ID 930460), p. 16
dcterms.bibliographicCitationMalekpour, A., Karney, B.W., Nault, J., Physical Understanding of Sudden Pressurization of Pipe Systems with Entrapped Air: Energy Auditing Approach (2016) Journal of Hydraulic Engineering, 142 (2)
dcterms.bibliographicCitationMartin, C.S., Entrapped Air in Pipelines (1976) Proceedings of the Second International Conference on Pressure Surges, , London, UK:. In
dcterms.bibliographicCitationMartino, G., Fontana, N., Giugni, M., Transient Flow Caused by Air Expulsion through an Orifice (2001) Journal of Hydraulic Engineering, 134 (9), pp. 1395-1399
dcterms.bibliographicCitationMartins, N.M.C., Soares, A.K., Ramos, H.M., Covas, D.I.C., CFD Modeling of Transient Flow in Pressurized Pipes (2016) Computers & Fluids, 126, pp. 129-140
dcterms.bibliographicCitationMartins, N.M.C., Delgado, J.N., Ramos, D.I.C., Covas, H.M., Maximum Transient Pressures in a Rapidly Filling Pipeline with Entrapped Air Using a CFD Model (2017) Journal of Hydraulic Research, 54 (4), pp. 506-518
dcterms.bibliographicCitationMartins, S.C., Ramos, H.M., Almeida, A.B., Conceptual Analogy for Modelling Entrapped Air Action in Hydraulic Systems (2015) Journal of Hydraulic Research, 53 (5), pp. 678-686
dcterms.bibliographicCitationMays, L., (1999) Hydraulic Desing Handbook, , New York, USA: Ed. McGraw-Hill
dcterms.bibliographicCitationMcInnis, D.A., Karney, B.W., Axworthy, D.H., Efficient Valve Representation in Fixed-Grid Characteristics Method (1997) Journal of Hydraulic Engineering, 123 (8), pp. 709-718
dcterms.bibliographicCitationRamezani, L., Karney, B., Water Column Separation and Cavity Collapse for Pipelines Protected with Air Vacuum Valves: Understanding the Essential Wave Process (2017) Journal of Hydraulic Engineering, 143 (12)
dcterms.bibliographicCitationRamezani, L., Karney, B., Malekpour, A., The Challenge of Air Valves: A Selective Critical Literature Review (2015) Journal of Water Resources Planning and Management, 141 (10)
dcterms.bibliographicCitationRamezani, L., Karney, B., Ma-lekpour, A., Encouraging Effective Air Management in Water Pipelines: A Critical Review (2016) Journal of Water Resources Planning and Management, 142 (12)
dcterms.bibliographicCitationShimada, M., Brown, J.M.B., Vardy, A.E., Interpolation Errors in Rectangular and Diamond Characteristic Grids (2008) Journal of Hydraulic Engineering, 134 (10), pp. 1480-1490
dcterms.bibliographicCitationStephenson, D., Effects of Air Valves and Pipework on Water Hammer Pressures (1997) Journal of Transportation Engineering, 123 (2), pp. 101-106
dcterms.bibliographicCitationTijsseling, A., Hou, Q., Bozkuş, Z., Laanearu, J., Improved One-Dimensional Models for Rapid Emptying and Filling of Pipelines (2016) Journal of Pressure Vessel Technology, 138 (3). , Paper 031301,): 1–11
dcterms.bibliographicCitationTran, P., Pressure Transients Caused by Air-Valve Closure while Filling Pipelines (2017) Journal of Hydraulic Engineering, 143 (2)
dcterms.bibliographicCitationTrindade, B., Vasconcelos, J.G., Modeling of Water Pipeline Filling Events Accounting for Air Phase Interactions (2006) Journal of Hydraulic Engineering, 139 (9). ,  921–934
dcterms.bibliographicCitationVasconcelos, J.G., Klaver, P.R., Lautenbach, D.J., Flow Regime Transition Simulation Incorporating Entrapped Air Pocket Effects (2015) Urban Water Journal, 12 (6)
dcterms.bibliographicCitationVasconcelos, J.G., Wright, S.J., Rapid Flow Startup in Filled Horizontal Pipelines (2008) Journal of Hydraulic Engineering, 134 (7), pp. 984-992
dcterms.bibliographicCitationWang, H., Zhou, L., Liu, D., Karney, B., Wang, P., Xia, L., Ma, J., Xu, C., CFD Approach for Column Separation in Water Pipelines (2016) Journal of Hydraulic Engineering, , Just Released
dcterms.bibliographicCitationWang, L., Wang, F., Karney, B., Malekpour, A., Numerical Investigation of Rapid Filling in Bypass Pipelines (2017) Journal of Hydraulic Research, 55 (5), pp. 647-656
dcterms.bibliographicCitationWang, L., Wang, F., Lei, X., Investigation on Friction Models for Simulation of Pipeline Filling Transients (2018) Journal of Hydraulic Research, , Article Press
dcterms.bibliographicCitationWatt, C.S., Application of Finite Element Method to Unsteady Flow Problems (1975) PhD diss., , England: Suntherland Polytechnic
dcterms.bibliographicCitationWylie, E., Streeter, V., (1993) Fluid Transients in Systems, , Englewood Cliffs, NJ: Ed. Prentice Hall
dcterms.bibliographicCitationYang, K., Practical Method to Prevent Liquid-column Separation (2001) Journal of Hydraulic Engineering, 127 (7), pp. 620-623
dcterms.bibliographicCitationZhou, F., Hicks, M., Steffler, P.M., Transient Flow in a Rapidly Filling Horizontal Pipe Containing Trapped Air (2002) Journal of Hydraulic Engineering, 128 (6), pp. 625-634
dcterms.bibliographicCitationZhou, L., Liu, D., Experimental Investigation of Entrapped Air Pocket in a Partially Full Water Pipe (2013) Journal of Hydraulic Research, 51 (4), pp. 469-474
dcterms.bibliographicCitationZhou, L., Liu, D., Karney, B., Investigation of Hydraulic Transients of Two Entrapped Air Pockets in a Water Pipeline (2013) Journal of Hydraulic Engineering, 139 (9), pp. 949-959
dcterms.bibliographicCitationZhou, L., Liu, D., Karney, B., Phenomenon of White Mist in Pipelines Rapidly Filling with Water with Entrapped Air Pocket (2013) Journal of Hydraulic Engineering, 139 (10), pp. 1041-1051
dcterms.bibliographicCitationZhou, L., Liu, D., Karney, B., Zhang, Q., Influence of Entrapped Air Pockets on Hydraulic Transients in Water Pipelines (2011) Journal of Hydraulic Engineering, 137 (12), pp. 1686-1692
dcterms.bibliographicCitationZhou, L., Liu, D., Ou, C., Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model (2011) Engineering Applications of Computational Fluid Mechanics, 5 (1), pp. 127-140
dcterms.bibliographicCitationZhou, L., Wang, H., Karney, B., Liu, D., Wang, P., Guo, S., Dynamic Behavior of Entrapped Air Pocket in a Water Filling Pipeline (2018) Journal of Hydraulic Engineering, 144 (8)
dcterms.bibliographicCitationZhou, L., Pan, T., Wang, H., Liu, D., Wang, P., Rapid Air Expulsion through an Orifice in a Vertical Water Pipe (2019) Journal of Hydraulic Research, , 57 (3): 307–317
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_dcae04bc
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/review
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1080/1573062X.2019.1669188
dc.subject.keywordsAir-water
dc.subject.keywordsEmptying
dc.subject.keywordsFilling
dc.subject.keywordsTransient flow
dc.subject.keywordsWater distribution system
dc.subject.keywordsDistribution system
dc.subject.keywordsFlow modeling
dc.subject.keywordsHydraulic structure
dc.subject.keywordsLiterature review
dc.subject.keywordsNnumerical model
dc.subject.keywordsPipeline
dc.subject.keywordsTransient flow
dc.subject.keywordsUncertainty analysis
dc.subject.keywordsWater column
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesFunding for Oscar E. Coronado-Hernández was covered by Fundación Centro de Estudios Interdisciplinarios Básicos y Aplicados (CEIBA) – Gobernación de Bolívar (Colombia). This study was also supported by the Program Fondecyt Regular [Project 1180660] of the Comisión Nacional de Investigación Científica y Tecnológica (Conicyt), Chile.
dc.type.spaArtículo de revisión
dc.identifier.orcid56074282700
dc.identifier.orcid57193337460
dc.identifier.orcid57193863782
dc.identifier.orcid15220062200


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.