Show simple item record

dc.creatorMontoya O.D.
dc.creatorGil-Gonzalez W.
dc.creatorGarces A.
dc.date.accessioned2020-03-26T16:33:02Z
dc.date.available2020-03-26T16:33:02Z
dc.date.issued2019
dc.identifier.citationIEEE Transactions on Circuits and Systems II: Express Briefs; Vol. 66, Núm. 6; pp. 1018-1022
dc.identifier.issn15497747
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9138
dc.description.abstractThis express brief shows a convex quadratic approximation for the optimal power flow (OPF) in direct-current microgrids (dc-μ Grid) via Taylor's series expansion. This approach can be used for solving OPF problems on radial and meshed dc-μ Grids with multiple constant power terminals, allowing to cover a wide range of configurations. Two test dc-μ Grids with 10 and 21 nodes were used to validate the proposed model. Nonlinear large-scale solvers were employed to compare the proposed linearization with the conventional nonlinear nonconvex model. © 2004-2012 IEEE.eng
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS: 727-2015 Department of Science, Information Technology and Innovation, Queensland Government
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85053592822&doi=10.1109%2fTCSII.2018.2871432&partnerID=40&md5=5f3643cb9add9444d667e177ae9a44bc
dc.titleOptimal Power Flow on DC Microgrids: A Quadratic Convex Approximation
dcterms.bibliographicCitationDragicević, T., Lu, X., Vasquez, J.C., Guerrero, J.M., DC microgrids-Part I: A review of control strategies and stabilization techniques (2016) IEEE Trans. Power Electron., 31 (7), pp. 4876-4891. , Jul
dcterms.bibliographicCitationElsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: An overview (2015) Electr. Power Syst. Res., 119, pp. 407-417. , Feb
dcterms.bibliographicCitationLi, J., Liu, F., Wang, Z., Low, S.H., Mei, S., Optimal power flow in stand-alone DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5496-5506. , Sep
dcterms.bibliographicCitationSimpson-Porco, J.W., Dörfler, F., Bullo, F., On resistive networks of constant-power devices (2015) IEEE Trans. Circuits Syst. II, Exp. Briefs, 62 (8), pp. 811-815. , Aug
dcterms.bibliographicCitationWang, Z., Liu, F., Chen, Y., Low, S.H., Mei, S., Unified distributed control of stand-alone DC microgrids IEEE Trans. Smart Grid, , http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8052512&isnumber=5446437, to be published. [Online]
dcterms.bibliographicCitationMolzahn, D.K., Identifying and characterizing non-convexities in feasible spaces of optimal power flow problems (2018) IEEE Trans. Circuits Syst. II, Exp. Briefs, 65 (5), pp. 672-676. , May
dcterms.bibliographicCitationSur, U., Sarkar, G., A sufficient condition for multiple load flow solutions existence in three phase unbalanced active distribution networks (2018) IEEE Trans. Circuits Syst. II, Exp. Briefs, 65 (6), pp. 784-788. , Jun
dcterms.bibliographicCitationGarces, A., Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electr. Power Syst. Res., 151, pp. 149-153. , Oct
dcterms.bibliographicCitationGarcés, A., On the convergence of Newton's method in power flow studies for DC microgrids (2018) IEEE Trans. Power Syst., 33 (5), pp. 5770-5777. , Sep
dcterms.bibliographicCitationLavaei, J., Low, S.H., Zero duality gap in optimal power flow problem (2012) IEEE Trans. Power Syst., 27 (1), pp. 92-107. , Feb
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A., Linear power flow formulation for low-voltage DC power grids (2018) Electr. Power Syst. Res., 163, pp. 375-381. , Oct
dcterms.bibliographicCitationMontoya, O.D., Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model IEEE Trans. Circuits Syst. II, Express Briefs, , http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8443095&isnumber=4358609, to be published. [Online]
dcterms.bibliographicCitationLow, S.H., Convex relaxation of optimal power flow-Part I: Formulations and equivalence (2014) IEEE Trans. Control Netw. Syst., 1 (1), pp. 15-27. , Mar
dcterms.bibliographicCitationBahrami, S., Therrien, F., Wong, V.W.S., Jatskevich, J., Semidefinite relaxation of optimal power flow for AC-DC grids (2017) IEEE Trans. Power Syst., 32 (1), pp. 289-304. , Jan
dcterms.bibliographicCitationVenzke, A., Halilbasic, L., Markovic, U., Hug, G., Chatzivasileiadis, S., Convex relaxations of chance constrained AC optimal power flow (2018) IEEE Trans. Power Syst., 33 (3), pp. 2829-2841. , May
dcterms.bibliographicCitationNick, M., Cherkaoui, R., Boudec, J.-Y.L., Paolone, M., An exact convex formulation of the optimal power flow in radial distribution networks including transverse components (2018) IEEE Trans. Autom. Control, 63 (3), pp. 682-697. , Mar
dcterms.bibliographicCitationGarces, A., A quadratic approximation for the optimal power flow in power distribution systems (2016) Electr. Power Syst. Res., 130, pp. 222-229. , Jan
dcterms.bibliographicCitationBarabanov, N., Ortega, R., Griñó, R., Polyak, B., On existence and stability of equilibria of linear time-invariant systems with constant power loads (2016) IEEE Trans. Circuits Syst. I, Reg. Papers, 63 (1), pp. 114-121. , Jan
dcterms.bibliographicCitationGrisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), pp. 1-27. , Apr
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1109/TCSII.2018.2871432
dc.subject.keywordsDc distribution
dc.subject.keywordsDc systems
dc.subject.keywordsDirect current microgrids
dc.subject.keywordsNonlinear dc circuits
dc.subject.keywordsOptimal power flow analysis
dc.subject.keywordsAcoustic generators
dc.subject.keywordsDC circuits
dc.subject.keywordsDc distribution
dc.subject.keywordsDC system
dc.subject.keywordsMicro grid
dc.subject.keywordsOptimal power flows
dc.subject.keywordsElectric load flow
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesManuscript received June 20, 2018; revised August 10, 2018; accepted September 7, 2018. Date of publication September 20, 2018; date of current version May 28, 2019. This work was supported by the National Scholarship Program Doctorates of the Administrative Department of Science, Technology and Innovation of Colombia (COLCIENCIAS) under Grant 727-2015. This brief was recommended by Associate Editor Y.-M. Chen. (Corresponding author: Oscar Danilo Montoya.) O. D. Montoya is with the Program of Electric and Electronic Engineering, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia (e-mail: o.d.montoyagiraldo@ieee.org).
dc.type.spaArtículo
dc.identifier.orcid56919564100
dc.identifier.orcid57191493648
dc.identifier.orcid36449223500


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.