Mostrar el registro sencillo del ítem
Large scale integration of renewable energy sources (RES) in the future Colombian energy system
dc.creator | Pupo-Roncallo O. | |
dc.creator | Campillo Jiménez, Javier Eduardo | |
dc.creator | Ingham, D. | |
dc.creator | Hughes K. | |
dc.creator | Pourkashanian M. | |
dc.date.accessioned | 2020-03-26T16:32:34Z | |
dc.date.available | 2020-03-26T16:32:34Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Energy; Vol. 186 | |
dc.identifier.issn | 03605442 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8895 | |
dc.description.abstract | The diversification of the energy matrix, including larger shares of Renewable Energy Sources (RES), is a significant part of the Colombian energy strategy towards a sustainable and more secure energy system. Historically, the country has relied on the intensive use of hydropower and fossil fuels as the main energy sources. Colombia has a huge renewables potential, and therefore the exploration of different pathways for their integration is required. The aim of this study was to build a model for a country with a hydro-dominated electric power system and analyse the impacts of integrated variable RES in long-term future scenarios. EnergyPLAN was the modelling tool employed for simulating the reference year and future alternatives. Initially, the reference model was validated, and successively five different scenarios were built. The results show that an increase in the shares of wind, solar and bioenergy could achieve an approximate reduction of 20% in both the CO2 emissions and the total fuel consumption of the country by 2030. Further, in the electricity sector the best-case scenario could allow an estimated 60% reduction in its emission intensity. © 2019 Elsevier Ltd | eng |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier Ltd | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85073648831&doi=10.1016%2fj.energy.2019.07.135&partnerID=40&md5=80f7b7aee06f9992811d0e116140325a | |
dc.title | Large scale integration of renewable energy sources (RES) in the future Colombian energy system | |
dcterms.bibliographicCitation | Ang, B.W., Choong, W.L., Ng, T.S., Energy security : definitions, dimensions and indexes (2015) Renew Sustain Energy Rev, 42, pp. 1077-1093 | |
dcterms.bibliographicCitation | Harnessing variable renewables (2012) | |
dcterms.bibliographicCitation | Planning for the renewable future (2017) | |
dcterms.bibliographicCitation | Connolly, D., Lund, H., Mathiesen, B.V., Leahy, M., A review of computer tools for analysing the integration of renewable energy into various energy systems (2010) Appl Energy, 87, pp. 1059-1082 | |
dcterms.bibliographicCitation | Batlle, C., Paredes, J.R., Análisis del impacto del incremento de la generación de energía renovable no convencional en los sistemas eléctricos latinoamericanos (2014), Washington, D.C., USA | |
dcterms.bibliographicCitation | de Moura, G.N.P., Legey, L.F.L., Howells, M., A Brazilian perspective of power systems integration using OSeMOSYS SAMBA – South America Model Base – and the bargaining power of neighbouring countries: a cooperative games approach (2018) Energy Policy, 115, pp. 470-485 | |
dcterms.bibliographicCitation | Octaviano, C., Paltsev, S., Gurgel, A.C., Climate change policy in Brazil and Mexico: results from the MIT EPPA model (2016) Energy Econ, 56, pp. 600-614 | |
dcterms.bibliographicCitation | (2017) Colombian electrical information system (SIEL), , http://www.siel.gov.co/, (Accessed 24 July 2018) | |
dcterms.bibliographicCitation | Schmidt, J., Cancella, R., Pereira, A.O., The role of wind power and solar PV in reducing risks in the Brazilian hydro-thermal power system (2016) Energy, 115, pp. 1748-1757 | |
dcterms.bibliographicCitation | Schmidt, J., Cancella, R., Pereira, A.O., An optimal mix of solar PV, wind and hydro power for a low-carbon electricity supply in Brazil (2016) Renew Energy, 85, pp. 137-147 | |
dcterms.bibliographicCitation | Hagos, D.A., Gebremedhin, A., Zethraeus, B., Towards a flexible energy system – a case study for Inland Norway (2014) Appl Energy, 130, pp. 41-50 | |
dcterms.bibliographicCitation | Mason, I.G., Page, S.C., Williamson, A.G.A., 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources (2010) Energy Policy, 38, pp. 3973-3984 | |
dcterms.bibliographicCitation | Integración de las energías renovables no convencionales en Colombia (2015), Bogota | |
dcterms.bibliographicCitation | Vergara, W., Deeb, A., Toba, N., Cramton, P., Leino, I., Benoit, P., Wind energy in Colombia (2010), The World Bank | |
dcterms.bibliographicCitation | Gonzalez-Salazar, M., Venturini, M., Poganietz, W.-R., Finkenrath, M., Acevedo, H., Kirsten, T., Bioenergy technology roadmap for Colombia (2014) | |
dcterms.bibliographicCitation | Paez, A.F., Maldonado, Y.M., Castro, A.O., Future scenarios and trends of energy demand in Colombia using long-range energy alternative planning (2017) Int J Energy Econ Policy, 7, pp. 178-190 | |
dcterms.bibliographicCitation | Chavez-Rodriguez, M.F., Carvajal, P.E., Martinez Jaramillo, J.E., Egüez, A., Mahecha, R.E.G., Schaeffer, R., Fuel saving strategies in the Andes: long-term impacts for Peru, Colombia and Ecuador (2018) Energy Strateg Rev, 20, pp. 35-48 | |
dcterms.bibliographicCitation | Calderón, S., Alvarez, A., Loboguerrero, A., Arango, S., Calvin, K., Kober, T., Achieving CO2 reductions in Colombia: effects of carbon taxes and abatement targets (2016) Energy Econ, 56, pp. 575-586 | |
dcterms.bibliographicCitation | Østergaard, P.A., Reviewing EnergyPLAN simulations and performance indicator applications in EnergyPLAN simulations (2015) Appl Energy, 154, pp. 921-933 | |
dcterms.bibliographicCitation | Connolly, D., Lund, H., Mathiesen, B.V., Leahy, M., The first step towards a 100% renewable energy-system for Ireland (2011) Appl Energy, 88, pp. 502-507 | |
dcterms.bibliographicCitation | Colombian energy balance (2018), http://www1.upme.gov.co/InformacionCifras/Paginas/BECOCONSULTA.aspx, (Accessed 9 July 2018) | |
dcterms.bibliographicCitation | (2011) Mining and Energy Planning Unit (UPME). Actualización y Revisión de los Balances Energéticos Nacionales de Colombia 1975–2009. Tomo I - balances Energéticos Nacionales, , UPME Bogota | |
dcterms.bibliographicCitation | Energy balances of non-OECD countries 2015 (2015), International Energy Agency Paris | |
dcterms.bibliographicCitation | (2017) Mining and energy planning unit (UPME). Plan de Expansión de Referencia generación transmisión 2017-2031, , Bogota | |
dcterms.bibliographicCitation | OECD environmental performance reviews: Colombia 2014 (2014), OECD Publishing Paris | |
dcterms.bibliographicCitation | Espinasa, R., Sucre, C., Gutierrez, M., Anaya, F., Dossier energetico: Colombia (2017), Washington, D.C., USA | |
dcterms.bibliographicCitation | Energy access outlook 2017: from poverty to prosperity (2017), OECD Paris | |
dcterms.bibliographicCitation | Morales, S., Álvarez, C., Acevedo, C., Diaz, C., Rodriguez, M., Pacheco, L., An overview of small hydropower plants in Colombia: status, potential, barriers and perspectives (2015) Renew Sustain Energy Rev, 50, pp. 1650-1657 | |
dcterms.bibliographicCitation | Macias, A.M., Andrade, J., Estudio de generación bajo escenarios de cambio climatico (2014), Bogota | |
dcterms.bibliographicCitation | Vargas, L., Jimenez-Estevez, G., Dias, M., Calfucoy, P., Barrera, M., Barrita, F., Comparative analysis of institutional and technical conditions relevant for the integration of renewable energy in South America (2014), REGSA | |
dcterms.bibliographicCitation | Gómez-Navarro, T., Ribó-Pérez, D., Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia (2018) Renew Sustain Energy Rev, 90, pp. 131-141 | |
dcterms.bibliographicCitation | World energy outlook 2017 (2017), OECD Publishing Paris | |
dcterms.bibliographicCitation | CORPOEMA – UPME, (2010) Formulación de un plan de desarrollo para las fuentes no convencionales de energía en Colombia (PDFNCE), 1. , First. Bogotá: Mining and Energy Planning Unit (UPME) | |
dcterms.bibliographicCitation | Edsand, H.-E., Identifying barriers to wind energy diffusion in Colombia: a function analysis of the technological innovation system and the wider context (2017) Technol Soc, 49, pp. 1-15 | |
dcterms.bibliographicCitation | Alternativas para la inclusión de FNCER en la matriz energética colombiana (2017) | |
dcterms.bibliographicCitation | Atlas de viento de Colombia (2017), Bogotá | |
dcterms.bibliographicCitation | Rodríguez-Urrego, D., Rodríguez-Urrego, L., Photovoltaic energy in Colombia: current status, inventory, policies and future prospects (2018) Renew Sustain Energy Rev, 92, pp. 160-170 | |
dcterms.bibliographicCitation | Atlas de radiación solar, ultravioleta y ozono de Colombia (2017), Bogotá | |
dcterms.bibliographicCitation | Radomes, A.A., Arango, S., Renewable energy technology diffusion: an analysis of photovoltaic-system support schemes in Medellín, Colombia (2015) J Clean Prod, 92, pp. 152-161 | |
dcterms.bibliographicCitation | Ministry of Mines and Energy (MME), Programa de Biocombustibles en Colombia (2007), Bogotá | |
dcterms.bibliographicCitation | Environment and Sustainable Development Ministry (MADS), Upstream analytical work to support development of policy options for mid- and long-term mitigation objectives in Colombia (2016), Bogota | |
dcterms.bibliographicCitation | Olaya, Y., Arango-Aramburo, S., Larsen, E.R., How capacity mechanisms drive technology choice in power generation: the case of Colombia (2016) Renew Sustain Energy Rev, 56, pp. 563-571 | |
dcterms.bibliographicCitation | Primer, I.D.E.A.M., Informe Bienal de Actualización de Colombia (2015) Bogota | |
dcterms.bibliographicCitation | Román, R., Cansino, J.M., Rodas, J.A., Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications (2018) Renew Energy, 116, pp. 402-411 | |
dcterms.bibliographicCitation | CO2 emissions from fuel combustion 2017 (2017), OECD Publishing Paris | |
dcterms.bibliographicCitation | IDEAM, P.N.U.D., DNP, C., Inventario Nacional de Gases de Efecto Invernadero (GEI) de Colombia. Tercera Comunicación Nacional de Cambio Climático de Colombia (2016), Bogotá D.C., Colombia | |
dcterms.bibliographicCitation | Gargiulo, M., Gallachóir, B.Ó., Long-term energy models: principles, characteristics, focus, and limitations (2013) Wiley Interdiscip Rev Energy Environ, 2, pp. 158-177 | |
dcterms.bibliographicCitation | Deane, J.P., Chiodi, A., Gargiulo, M., Ó Gallachóir, B.P., Soft-linking of a power systems model to an energy systems model (2012) Energy, 42, pp. 303-312 | |
dcterms.bibliographicCitation | Lund, H., EnergyPLAN - advanced energy systems analysis computer model https://www.energyplan.eu/, n.d. (Accessed 27 July 2018) | |
dcterms.bibliographicCitation | Edmunds, R.K., Cockerill, T.T., Foxon, T.J., Ingham, D.B., Pourkashanian, M., Technical benefits of energy storage and electricity interconnections in future British power systems (2014) Energy, 70, pp. 577-587 | |
dcterms.bibliographicCitation | Dranka, G.G., Ferreira, P., Planning for a renewable future in the Brazilian power system (2018) Energy, 164, pp. 496-511 | |
dcterms.bibliographicCitation | Lund, H., Renewable energy systems: a smart energy systems approach to the choice and modeling of 100% renewable solutions (2014), second ed. Ringgold Inc. Amsterdam: Beaverton | |
dcterms.bibliographicCitation | Lund, H., Mathiesen, B.V., Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050 (2009) Energy, 34, pp. 524-531 | |
dcterms.bibliographicCitation | Connolly, D., The integration of fluctuating renewable energy using energy storage (2010), University of Limerick | |
dcterms.bibliographicCitation | Dorotić, H., Doračić, B., Dobravec, V., Pukšec, T., Krajačić, G., Duić, N., Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources (2019) Renew Sustain Energy Rev, 99, pp. 109-124 | |
dcterms.bibliographicCitation | Bellocchi, S., Gambini, M., Manno, M., Stilo, T., Vellini, M., Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: the Italian case (2018) Energy, 161, pp. 172-182 | |
dcterms.bibliographicCitation | Pfeifer, A., Dobravec, V., Pavlinek, L., Krajačić, G., Duić, N., Integration of renewable energy and demand response technologies in interconnected energy systems (2018) Energy, 161, pp. 447-455 | |
dcterms.bibliographicCitation | Connolly, D., Finding and inputting data into the EnergyPLAN tool (2015), Aalborg | |
dcterms.bibliographicCitation | XM. Portal, BI - gestión información inteligente http://informacioninteligente10.xm.com.co/pages/default.aspx, n.d (Accessed 30 July 2018) | |
dcterms.bibliographicCitation | George, M., Banerjee, R., A methodology for analysis of impacts of grid integration of renewable energy (2011) Energy Policy, 39, pp. 1265-1276 | |
dcterms.bibliographicCitation | IPCC guidelines for national greenhouse gas inventories, intergovernmental Panel on climate change (IPCC), task force on national greenhouse gas inventories (TFI) https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html, n.d (Accessed 28 September 2018) | |
dcterms.bibliographicCitation | Emission factor database (EFDB) https://www.ipcc-nggip.iges.or.jp/EFDB/main.php, n.d (Accessed 28 September 2018) | |
dcterms.bibliographicCitation | Connolly, D., Lund, H., Mathiesen, B.V., Leahy, M., Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible (2010) Energy, 35, pp. 2164-2173 | |
dcterms.bibliographicCitation | CO2 emissions from fuel combustion (2016), 2016 | |
dcterms.bibliographicCitation | Energy balances (2016), Edition 2016 | |
dcterms.bibliographicCitation | You, W., Geng, Y., Dong, H., Wilson, J., Pan, H., Wu, R., Technical and economic assessment of RES penetration by modelling China's existing energy system (2018) Energy, 165, pp. 900-910 | |
dcterms.bibliographicCitation | (2013) Panorama del cambio climático en Colombia, 146. , Santiago | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_6501 | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1016/j.energy.2019.07.135 | |
dc.subject.keywords | Colombia | |
dc.subject.keywords | Energy system analysis | |
dc.subject.keywords | EnergyPLAN | |
dc.subject.keywords | RES | |
dc.subject.keywords | Electric power systems | |
dc.subject.keywords | Fossil fuels | |
dc.subject.keywords | Natural resources | |
dc.subject.keywords | Rhenium | |
dc.subject.keywords | Colombia | |
dc.subject.keywords | Electricity sector | |
dc.subject.keywords | Emission intensity | |
dc.subject.keywords | Energy system analysis | |
dc.subject.keywords | EnergyPLAN | |
dc.subject.keywords | Reference modeling | |
dc.subject.keywords | Renewable energy source | |
dc.subject.keywords | Scale integration | |
dc.subject.keywords | Renewable energy resources | |
dc.subject.keywords | Alternative energy | |
dc.subject.keywords | Bioenergy | |
dc.subject.keywords | Electrical power | |
dc.subject.keywords | Energy efficiency | |
dc.subject.keywords | Energy resource | |
dc.subject.keywords | Exploration | |
dc.subject.keywords | Fuel consumption | |
dc.subject.keywords | Long-term change | |
dc.subject.keywords | Numerical model | |
dc.subject.keywords | Sustainability | |
dc.subject.keywords | Sustainable development | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.description.notes | This research was supported by the Fundación CEIBA - Gobernación de Bolívar through the program “Bolivar gana con ciencia”. We thank our colleague Mauro Gonzalez, from TEBSA, who provided his insights and expertise that greatly assisted this work. We also thank IDEAM for providing their weather station data. AFOLU Agriculture, Forestry and Other Land Use BaU Business as Usual CEEP Critical Excess of Electricity Production CEPAL Economic Commission for Latin America and the Caribbean COMP Compromise Coefficient COP Conference of the parties ENSO El Niño and La Niña southern oscillation EPPA Economic Projection and Policy Analysis GDP Gross Domestic Product GHG Greenhouse gases IDEAM Hydrology, meteorology and environmental institute IEA International Energy Agency iNDC Intended Nationally Determined Contributions IPCC Intergovernmental Panel for Climate Change IPPU Industrial Products and Product Use ISA Interconexión eléctrica S.A. (Electric interconnection company) LEAP Long-range Energy Alternatives Planning OSeMOSYS Open Source Energy Modelling System PES Primary Energy Supply PV Photovoltaics RES Renewable Energy Sources SIEL Colombian Electrical Information System SIN National Interconnected System tCO 2 e ton of CO 2 equivalent TPES Total primary energy supply UPME Unidad de Planeación Minero Energética (Mining and Energy Planning Unit) VRS Variable Renewable Source XM Compañía de Expertos en Mercados (Market experts company) ZNI Not-Interconnected Zones | |
dc.type.spa | Artículo | |
dc.identifier.orcid | 57211364524 | |
dc.identifier.orcid | 55609096600 | |
dc.identifier.orcid | 35560744900 | |
dc.identifier.orcid | 7202448730 | |
dc.identifier.orcid | 7004225021 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1475]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.