Mostrar el registro sencillo del ítem

dc.creatorPupo-Roncallo O.
dc.creatorCampillo Jiménez, Javier Eduardo
dc.creatorIngham, D.
dc.creatorHughes K.
dc.creatorPourkashanian M.
dc.date.accessioned2020-03-26T16:32:34Z
dc.date.available2020-03-26T16:32:34Z
dc.date.issued2019
dc.identifier.citationEnergy; Vol. 186
dc.identifier.issn03605442
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8895
dc.description.abstractThe diversification of the energy matrix, including larger shares of Renewable Energy Sources (RES), is a significant part of the Colombian energy strategy towards a sustainable and more secure energy system. Historically, the country has relied on the intensive use of hydropower and fossil fuels as the main energy sources. Colombia has a huge renewables potential, and therefore the exploration of different pathways for their integration is required. The aim of this study was to build a model for a country with a hydro-dominated electric power system and analyse the impacts of integrated variable RES in long-term future scenarios. EnergyPLAN was the modelling tool employed for simulating the reference year and future alternatives. Initially, the reference model was validated, and successively five different scenarios were built. The results show that an increase in the shares of wind, solar and bioenergy could achieve an approximate reduction of 20% in both the CO2 emissions and the total fuel consumption of the country by 2030. Further, in the electricity sector the best-case scenario could allow an estimated 60% reduction in its emission intensity. © 2019 Elsevier Ltdeng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier Ltd
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85073648831&doi=10.1016%2fj.energy.2019.07.135&partnerID=40&md5=80f7b7aee06f9992811d0e116140325a
dc.titleLarge scale integration of renewable energy sources (RES) in the future Colombian energy system
dcterms.bibliographicCitationAng, B.W., Choong, W.L., Ng, T.S., Energy security : definitions, dimensions and indexes (2015) Renew Sustain Energy Rev, 42, pp. 1077-1093
dcterms.bibliographicCitationHarnessing variable renewables (2012)
dcterms.bibliographicCitationPlanning for the renewable future (2017)
dcterms.bibliographicCitationConnolly, D., Lund, H., Mathiesen, B.V., Leahy, M., A review of computer tools for analysing the integration of renewable energy into various energy systems (2010) Appl Energy, 87, pp. 1059-1082
dcterms.bibliographicCitationBatlle, C., Paredes, J.R., Análisis del impacto del incremento de la generación de energía renovable no convencional en los sistemas eléctricos latinoamericanos (2014), Washington, D.C., USA
dcterms.bibliographicCitationde Moura, G.N.P., Legey, L.F.L., Howells, M., A Brazilian perspective of power systems integration using OSeMOSYS SAMBA – South America Model Base – and the bargaining power of neighbouring countries: a cooperative games approach (2018) Energy Policy, 115, pp. 470-485
dcterms.bibliographicCitationOctaviano, C., Paltsev, S., Gurgel, A.C., Climate change policy in Brazil and Mexico: results from the MIT EPPA model (2016) Energy Econ, 56, pp. 600-614
dcterms.bibliographicCitation(2017) Colombian electrical information system (SIEL), , http://www.siel.gov.co/, (Accessed 24 July 2018)
dcterms.bibliographicCitationSchmidt, J., Cancella, R., Pereira, A.O., The role of wind power and solar PV in reducing risks in the Brazilian hydro-thermal power system (2016) Energy, 115, pp. 1748-1757
dcterms.bibliographicCitationSchmidt, J., Cancella, R., Pereira, A.O., An optimal mix of solar PV, wind and hydro power for a low-carbon electricity supply in Brazil (2016) Renew Energy, 85, pp. 137-147
dcterms.bibliographicCitationHagos, D.A., Gebremedhin, A., Zethraeus, B., Towards a flexible energy system – a case study for Inland Norway (2014) Appl Energy, 130, pp. 41-50
dcterms.bibliographicCitationMason, I.G., Page, S.C., Williamson, A.G.A., 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources (2010) Energy Policy, 38, pp. 3973-3984
dcterms.bibliographicCitationIntegración de las energías renovables no convencionales en Colombia (2015), Bogota
dcterms.bibliographicCitationVergara, W., Deeb, A., Toba, N., Cramton, P., Leino, I., Benoit, P., Wind energy in Colombia (2010), The World Bank
dcterms.bibliographicCitationGonzalez-Salazar, M., Venturini, M., Poganietz, W.-R., Finkenrath, M., Acevedo, H., Kirsten, T., Bioenergy technology roadmap for Colombia (2014)
dcterms.bibliographicCitationPaez, A.F., Maldonado, Y.M., Castro, A.O., Future scenarios and trends of energy demand in Colombia using long-range energy alternative planning (2017) Int J Energy Econ Policy, 7, pp. 178-190
dcterms.bibliographicCitationChavez-Rodriguez, M.F., Carvajal, P.E., Martinez Jaramillo, J.E., Egüez, A., Mahecha, R.E.G., Schaeffer, R., Fuel saving strategies in the Andes: long-term impacts for Peru, Colombia and Ecuador (2018) Energy Strateg Rev, 20, pp. 35-48
dcterms.bibliographicCitationCalderón, S., Alvarez, A., Loboguerrero, A., Arango, S., Calvin, K., Kober, T., Achieving CO2 reductions in Colombia: effects of carbon taxes and abatement targets (2016) Energy Econ, 56, pp. 575-586
dcterms.bibliographicCitationØstergaard, P.A., Reviewing EnergyPLAN simulations and performance indicator applications in EnergyPLAN simulations (2015) Appl Energy, 154, pp. 921-933
dcterms.bibliographicCitationConnolly, D., Lund, H., Mathiesen, B.V., Leahy, M., The first step towards a 100% renewable energy-system for Ireland (2011) Appl Energy, 88, pp. 502-507
dcterms.bibliographicCitationColombian energy balance (2018), http://www1.upme.gov.co/InformacionCifras/Paginas/BECOCONSULTA.aspx, (Accessed 9 July 2018)
dcterms.bibliographicCitation(2011) Mining and Energy Planning Unit (UPME). Actualización y Revisión de los Balances Energéticos Nacionales de Colombia 1975–2009. Tomo I - balances Energéticos Nacionales, , UPME Bogota
dcterms.bibliographicCitationEnergy balances of non-OECD countries 2015 (2015), International Energy Agency Paris
dcterms.bibliographicCitation(2017) Mining and energy planning unit (UPME). Plan de Expansión de Referencia generación transmisión 2017-2031, , Bogota
dcterms.bibliographicCitationOECD environmental performance reviews: Colombia 2014 (2014), OECD Publishing Paris
dcterms.bibliographicCitationEspinasa, R., Sucre, C., Gutierrez, M., Anaya, F., Dossier energetico: Colombia (2017), Washington, D.C., USA
dcterms.bibliographicCitationEnergy access outlook 2017: from poverty to prosperity (2017), OECD Paris
dcterms.bibliographicCitationMorales, S., Álvarez, C., Acevedo, C., Diaz, C., Rodriguez, M., Pacheco, L., An overview of small hydropower plants in Colombia: status, potential, barriers and perspectives (2015) Renew Sustain Energy Rev, 50, pp. 1650-1657
dcterms.bibliographicCitationMacias, A.M., Andrade, J., Estudio de generación bajo escenarios de cambio climatico (2014), Bogota
dcterms.bibliographicCitationVargas, L., Jimenez-Estevez, G., Dias, M., Calfucoy, P., Barrera, M., Barrita, F., Comparative analysis of institutional and technical conditions relevant for the integration of renewable energy in South America (2014), REGSA
dcterms.bibliographicCitationGómez-Navarro, T., Ribó-Pérez, D., Assessing the obstacles to the participation of renewable energy sources in the electricity market of Colombia (2018) Renew Sustain Energy Rev, 90, pp. 131-141
dcterms.bibliographicCitationWorld energy outlook 2017 (2017), OECD Publishing Paris
dcterms.bibliographicCitationCORPOEMA – UPME, (2010) Formulación de un plan de desarrollo para las fuentes no convencionales de energía en Colombia (PDFNCE), 1. , First. Bogotá: Mining and Energy Planning Unit (UPME)
dcterms.bibliographicCitationEdsand, H.-E., Identifying barriers to wind energy diffusion in Colombia: a function analysis of the technological innovation system and the wider context (2017) Technol Soc, 49, pp. 1-15
dcterms.bibliographicCitationAlternativas para la inclusión de FNCER en la matriz energética colombiana (2017)
dcterms.bibliographicCitationAtlas de viento de Colombia (2017), Bogotá
dcterms.bibliographicCitationRodríguez-Urrego, D., Rodríguez-Urrego, L., Photovoltaic energy in Colombia: current status, inventory, policies and future prospects (2018) Renew Sustain Energy Rev, 92, pp. 160-170
dcterms.bibliographicCitationAtlas de radiación solar, ultravioleta y ozono de Colombia (2017), Bogotá
dcterms.bibliographicCitationRadomes, A.A., Arango, S., Renewable energy technology diffusion: an analysis of photovoltaic-system support schemes in Medellín, Colombia (2015) J Clean Prod, 92, pp. 152-161
dcterms.bibliographicCitationMinistry of Mines and Energy (MME), Programa de Biocombustibles en Colombia (2007), Bogotá
dcterms.bibliographicCitationEnvironment and Sustainable Development Ministry (MADS), Upstream analytical work to support development of policy options for mid- and long-term mitigation objectives in Colombia (2016), Bogota
dcterms.bibliographicCitationOlaya, Y., Arango-Aramburo, S., Larsen, E.R., How capacity mechanisms drive technology choice in power generation: the case of Colombia (2016) Renew Sustain Energy Rev, 56, pp. 563-571
dcterms.bibliographicCitationPrimer, I.D.E.A.M., Informe Bienal de Actualización de Colombia (2015) Bogota
dcterms.bibliographicCitationRomán, R., Cansino, J.M., Rodas, J.A., Analysis of the main drivers of CO2 emissions changes in Colombia (1990–2012) and its political implications (2018) Renew Energy, 116, pp. 402-411
dcterms.bibliographicCitationCO2 emissions from fuel combustion 2017 (2017), OECD Publishing Paris
dcterms.bibliographicCitationIDEAM, P.N.U.D., DNP, C., Inventario Nacional de Gases de Efecto Invernadero (GEI) de Colombia. Tercera Comunicación Nacional de Cambio Climático de Colombia (2016), Bogotá D.C., Colombia
dcterms.bibliographicCitationGargiulo, M., Gallachóir, B.Ó., Long-term energy models: principles, characteristics, focus, and limitations (2013) Wiley Interdiscip Rev Energy Environ, 2, pp. 158-177
dcterms.bibliographicCitationDeane, J.P., Chiodi, A., Gargiulo, M., Ó Gallachóir, B.P., Soft-linking of a power systems model to an energy systems model (2012) Energy, 42, pp. 303-312
dcterms.bibliographicCitationLund, H., EnergyPLAN - advanced energy systems analysis computer model https://www.energyplan.eu/, n.d. (Accessed 27 July 2018)
dcterms.bibliographicCitationEdmunds, R.K., Cockerill, T.T., Foxon, T.J., Ingham, D.B., Pourkashanian, M., Technical benefits of energy storage and electricity interconnections in future British power systems (2014) Energy, 70, pp. 577-587
dcterms.bibliographicCitationDranka, G.G., Ferreira, P., Planning for a renewable future in the Brazilian power system (2018) Energy, 164, pp. 496-511
dcterms.bibliographicCitationLund, H., Renewable energy systems: a smart energy systems approach to the choice and modeling of 100% renewable solutions (2014), second ed. Ringgold Inc. Amsterdam: Beaverton
dcterms.bibliographicCitationLund, H., Mathiesen, B.V., Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050 (2009) Energy, 34, pp. 524-531
dcterms.bibliographicCitationConnolly, D., The integration of fluctuating renewable energy using energy storage (2010), University of Limerick
dcterms.bibliographicCitationDorotić, H., Doračić, B., Dobravec, V., Pukšec, T., Krajačić, G., Duić, N., Integration of transport and energy sectors in island communities with 100% intermittent renewable energy sources (2019) Renew Sustain Energy Rev, 99, pp. 109-124
dcterms.bibliographicCitationBellocchi, S., Gambini, M., Manno, M., Stilo, T., Vellini, M., Positive interactions between electric vehicles and renewable energy sources in CO2-reduced energy scenarios: the Italian case (2018) Energy, 161, pp. 172-182
dcterms.bibliographicCitationPfeifer, A., Dobravec, V., Pavlinek, L., Krajačić, G., Duić, N., Integration of renewable energy and demand response technologies in interconnected energy systems (2018) Energy, 161, pp. 447-455
dcterms.bibliographicCitationConnolly, D., Finding and inputting data into the EnergyPLAN tool (2015), Aalborg
dcterms.bibliographicCitationXM. Portal, BI - gestión información inteligente http://informacioninteligente10.xm.com.co/pages/default.aspx, n.d (Accessed 30 July 2018)
dcterms.bibliographicCitationGeorge, M., Banerjee, R., A methodology for analysis of impacts of grid integration of renewable energy (2011) Energy Policy, 39, pp. 1265-1276
dcterms.bibliographicCitationIPCC guidelines for national greenhouse gas inventories, intergovernmental Panel on climate change (IPCC), task force on national greenhouse gas inventories (TFI) https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html, n.d (Accessed 28 September 2018)
dcterms.bibliographicCitationEmission factor database (EFDB) https://www.ipcc-nggip.iges.or.jp/EFDB/main.php, n.d (Accessed 28 September 2018)
dcterms.bibliographicCitationConnolly, D., Lund, H., Mathiesen, B.V., Leahy, M., Modelling the existing Irish energy-system to identify future energy costs and the maximum wind penetration feasible (2010) Energy, 35, pp. 2164-2173
dcterms.bibliographicCitationCO2 emissions from fuel combustion (2016), 2016
dcterms.bibliographicCitationEnergy balances (2016), Edition 2016
dcterms.bibliographicCitationYou, W., Geng, Y., Dong, H., Wilson, J., Pan, H., Wu, R., Technical and economic assessment of RES penetration by modelling China's existing energy system (2018) Energy, 165, pp. 900-910
dcterms.bibliographicCitation(2013) Panorama del cambio climático en Colombia, 146. , Santiago
datacite.rightshttp://purl.org/coar/access_right/c_16ec
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1016/j.energy.2019.07.135
dc.subject.keywordsColombia
dc.subject.keywordsEnergy system analysis
dc.subject.keywordsEnergyPLAN
dc.subject.keywordsRES
dc.subject.keywordsElectric power systems
dc.subject.keywordsFossil fuels
dc.subject.keywordsNatural resources
dc.subject.keywordsRhenium
dc.subject.keywordsColombia
dc.subject.keywordsElectricity sector
dc.subject.keywordsEmission intensity
dc.subject.keywordsEnergy system analysis
dc.subject.keywordsEnergyPLAN
dc.subject.keywordsReference modeling
dc.subject.keywordsRenewable energy source
dc.subject.keywordsScale integration
dc.subject.keywordsRenewable energy resources
dc.subject.keywordsAlternative energy
dc.subject.keywordsBioenergy
dc.subject.keywordsElectrical power
dc.subject.keywordsEnergy efficiency
dc.subject.keywordsEnergy resource
dc.subject.keywordsExploration
dc.subject.keywordsFuel consumption
dc.subject.keywordsLong-term change
dc.subject.keywordsNumerical model
dc.subject.keywordsSustainability
dc.subject.keywordsSustainable development
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.description.notesThis research was supported by the Fundación CEIBA - Gobernación de Bolívar through the program “Bolivar gana con ciencia”. We thank our colleague Mauro Gonzalez, from TEBSA, who provided his insights and expertise that greatly assisted this work. We also thank IDEAM for providing their weather station data. AFOLU Agriculture, Forestry and Other Land Use BaU Business as Usual CEEP Critical Excess of Electricity Production CEPAL Economic Commission for Latin America and the Caribbean COMP Compromise Coefficient COP Conference of the parties ENSO El Niño and La Niña southern oscillation EPPA Economic Projection and Policy Analysis GDP Gross Domestic Product GHG Greenhouse gases IDEAM Hydrology, meteorology and environmental institute IEA International Energy Agency iNDC Intended Nationally Determined Contributions IPCC Intergovernmental Panel for Climate Change IPPU Industrial Products and Product Use ISA Interconexión eléctrica S.A. (Electric interconnection company) LEAP Long-range Energy Alternatives Planning OSeMOSYS Open Source Energy Modelling System PES Primary Energy Supply PV Photovoltaics RES Renewable Energy Sources SIEL Colombian Electrical Information System SIN National Interconnected System tCO 2 e ton of CO 2 equivalent TPES Total primary energy supply UPME Unidad de Planeación Minero Energética (Mining and Energy Planning Unit) VRS Variable Renewable Source XM Compañía de Expertos en Mercados (Market experts company) ZNI Not-Interconnected Zones
dc.type.spaArtículo
dc.identifier.orcid57211364524
dc.identifier.orcid55609096600
dc.identifier.orcid35560744900
dc.identifier.orcid7202448730
dc.identifier.orcid7004225021


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.