Mostrar el registro sencillo del ítem
An Exact Feedback Linearization Control of a SMES System to Support Power in Electrical Grids
dc.creator | Montoya O.D. | |
dc.creator | Garrido Arévalo, Víctor Manuel | |
dc.creator | Gil-González W. | |
dc.creator | Holguín E. | |
dc.creator | Garces A. | |
dc.date.accessioned | 2020-03-26T16:32:30Z | |
dc.date.available | 2020-03-26T16:32:30Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | 2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018 | |
dc.identifier.isbn | 9781538678428 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/8855 | |
dc.description.abstract | This paper presents an exact feedback linearization control strategy to operate superconducting magnetic energy storage (SMES) systems connected to an electric distribution network through a pulse-width-modulated current source converter (PWM-CSC). To model this system an average model is employed by using dq reference frame. The dynamical model of the SMES system considering the PWM-CSC is transformed algebraically into an equivalent linear model by simple substitutions, avoiding to use an equivalent linearization technique or Taylor's series. The linear model preserves all features of the nonlinear model, which allows obtaining control laws to be applicable in its non- linear system. The proposed control scheme permits the active and reactive control of the SMES system in a wide range of operating independently. The effectiveness and the robustness of the proposed control methodology are tested in a low-voltage distribution network considering unbalance and high harmonic distortion in the voltage provided by the utility. All simulation cases are carried out in MATLAB/ODE environment under time domain reference frame, and they are compared with a conventional PI controller. © 2018 IEEE. | eng |
dc.description.sponsorship | Departamento Administrativo de Ciencia, Tecnología e Innovación, COLCIENCIAS Universidad Tecnológica de Pereira, UTP | |
dc.format.medium | Recurso electrónico | |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069794971&doi=10.1109%2fEPIM.2018.8756468&partnerID=40&md5=088e8424a73cec3eac060ad14b70c66f | |
dc.title | An Exact Feedback Linearization Control of a SMES System to Support Power in Electrical Grids | |
dcterms.bibliographicCitation | Jain, N., Singh, S., Srivastava, S., PSO based placement of multiple wind DGs and capacitors utilizing probabilistic load flow model (2014) Swarm Evol. Comput., 19, pp. 15-24 | |
dcterms.bibliographicCitation | Montoya, O.D., Garcés, A., Serra, F.M., DERs integration in microgrids using VSCs via proportional feedback linearization control: Supercapacitors and distributed generators (2018) J. Energy Storage, 16, pp. 250-258 | |
dcterms.bibliographicCitation | Ruiz, X., Role of the european union in the climate change negotiations (2015) UNISCI Discussion Papers, (39), pp. 105-129. , Oct | |
dcterms.bibliographicCitation | Ellabban, O., Abu-Rub, H., Blaabjerg, F., Renewable energy resources: Current status, future prospects and their enabling technology (2014) Renew Sust Energ Rev, 39, pp. 748-764 | |
dcterms.bibliographicCitation | Elsayed, A.T., Mohamed, A.A., Mohammed, O.A., DC microgrids and distribution systems: An overview (2015) Electr. Power Syst. Res., 119, pp. 407-417. , Feb | |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Garcés, A., Escobar, A., Grisales-Noreña, L.F., Nonlinear control for battery energy storage systems in power grids (2018) Green Technologies Conference (GreenTech), 2018, pp. 65-70 | |
dcterms.bibliographicCitation | Ali, M., Wu, B., Dougal, R., An overview of SMES applications in power and energy systems (2010) IEEE Trans. Sustain. Energy, 1 (1), pp. 38-47. , Apr | |
dcterms.bibliographicCitation | Ibrahim, H., Ilinca, A., Perron, J., Energy storage systems-Characteristics and comparisons (2008) Renew Sust Energ Rev, 12 (5), pp. 1221-1250. , Jun | |
dcterms.bibliographicCitation | Montoya, O.D., Garcés, A., Espinosa-Pérez, G., A generalized passivity-based control approach for power compensation in distribution systems using electrical energy storage systems (2018) J. Energy Storage, 16, pp. 259-268 | |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Serra, F.M., PBC approach for SMES devices in electric distribution networks (2018) IEEE Trans. Circuits Syst. II, p. 1 | |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D., Passivity-based PI control of a SMES system to support power in electrical grids: A bilinear approach (2018) J. Energy Storage, 18, pp. 459-466 | |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D., Garces, A., Control of a SMES for mitigating subsynchronous oscillations in power systems: A PBC-PI approach (2018) J. Energy Storage, 20, pp. 163-172 | |
dcterms.bibliographicCitation | Ortega, A., Milano, F., Comparison of different control strategies for energy storage devices (2016) 2016 Power Systems Computation Conference (PSCC), pp. 1-7. , Jun | |
dcterms.bibliographicCitation | Rahim, A.H.M.A., Mohammad, A.M., Khan, M.R., Control of subsynchronous resonant modes in a series compensated system through superconducting magnetic energy storage units (1996) IEEE Trans. Energy Convers., 11 (1), pp. 175-180. , Mar | |
dcterms.bibliographicCitation | Liu, F., Mei, S., Xia, D., Ma, Y., Jiang, X., Lu, Q., Experimental evaluation of nonlinear robust control for SMES to improve the transient stability of power systems (2004) IEEE Trans. Energy Convers., 19 (4), pp. 774-782 | |
dcterms.bibliographicCitation | Wang, S., Jin, J., Design and analysis of a fuzzy logic controlled smes system (2014) IEEE Trans. Appl. Supercond., 24 (5), pp. 1-5. , Oct | |
dcterms.bibliographicCitation | Sudha, K., Santhi, R., Load frequency control of an interconnected reheat thermal system using type-2 fuzzy system including SMES units (2012) Int. J. Electr. Power Energy Syst., 43 (1), pp. 1383-1392 | |
dcterms.bibliographicCitation | Ali, M.H., Park, M., Yu, I.K., Murata, T., Tamura, J., Improvement of wind-generator stability by fuzzy-logic-controlled smes (2009) IEEE Trans. Ind. Appl., 45 (3), pp. 1045-1051. , May | |
dcterms.bibliographicCitation | Shi, J., Tang, Y., Yang, K., Chen, L., Ren, L., Li, J., Cheng, S., SMES based dynamic voltage restorer for voltage fluctuations compensation (2010) IEEE Trans. Appl. Supercond., 20 (3), pp. 1360-1364 | |
dcterms.bibliographicCitation | Shi, J., Tang, Y., Ren, L., Li, J., Cheng, S., Discretization-based decoupled state-feedback control for current source power conditioning system of SMES (2008) IEEE Trans. Power Delivery, 23 (4), pp. 2097-2104. , Oct | |
dcterms.bibliographicCitation | Kiaei, I., Lotfifard, S., Tube-based model predictive control of energy storage systems for enhancing transient stability of power systems (2017) IEEE Trans. Smart Grid, PP (99), p. 1 | |
dcterms.bibliographicCitation | Nguyen, T.T., Yoo, H.J., Kim, H.M., Applying model predictive control to smes system in microgrids for eddy current losses reduction (2016) IEEE Trans. Appl. Supercond., 26 (4), pp. 1-5. , June | |
dcterms.bibliographicCitation | Gil-González, W., Montoya, O.D., Garcés, A., Escobar-Mejía, A., Supervisory LMI-based state-feedback control for current source power conditioning of SMES (2017) 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), pp. 145-150. , March | |
dcterms.bibliographicCitation | Gil-González, W.J., Garcés, A., Escobar, A., A generalized model and control for supermagnetic and supercapacitor energy storage (2017) Ingeniería y Ciencia, 13 (26), pp. 147-171 | |
dcterms.bibliographicCitation | Montoya, O.D., Gil-González, W., Garcés, A., Espinosa-Pérez, G., Indirect IDA-PBC for active and reactive power support in distribution networks using SMES systems with PWM-CSC (2018) J. Energy Storage, 17, pp. 261-271 | |
dcterms.bibliographicCitation | Golestan, S., Guerrero, J.M., Vasquez, J.C., Three-phase PLLs: A review of recent advances (2017) IEEE Trans. Power Electron., 32 (3), pp. 1894-1907. , March | |
datacite.rights | http://purl.org/coar/access_right/c_16ec | |
oaire.resourceType | http://purl.org/coar/resource_type/c_c94f | |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.source.event | 9th IEEE Power, Instrumentation and Measurement Meeting, EPIM 2018 | |
dc.type.driver | info:eu-repo/semantics/conferenceObject | |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | |
dc.identifier.doi | 10.1109/EPIM.2018.8756468 | |
dc.subject.keywords | Exact feedback linearization | |
dc.subject.keywords | Low-voltage distribution network | |
dc.subject.keywords | Pulsed-width modulated current source converter | |
dc.subject.keywords | Superconducting magnetic energy storage | |
dc.subject.keywords | Electric energy storage | |
dc.subject.keywords | Feedback linearization | |
dc.subject.keywords | Linear systems | |
dc.subject.keywords | Magnetic storage | |
dc.subject.keywords | MATLAB | |
dc.subject.keywords | Nonlinear systems | |
dc.subject.keywords | Pulse width modulation | |
dc.subject.keywords | Robustness (control systems) | |
dc.subject.keywords | Spatial variables control | |
dc.subject.keywords | Superconducting magnets | |
dc.subject.keywords | Voltage distribution measurement | |
dc.subject.keywords | Conventional-PI controller | |
dc.subject.keywords | Equivalent linear model | |
dc.subject.keywords | Equivalent linearization techniques | |
dc.subject.keywords | Exact feedback linearization | |
dc.subject.keywords | Low voltage distribution network | |
dc.subject.keywords | Modulated current | |
dc.subject.keywords | Superconducting magnetic energy storage system | |
dc.subject.keywords | Superconducting magnetic energy storages | |
dc.subject.keywords | Electric power system control | |
dc.rights.accessrights | info:eu-repo/semantics/restrictedAccess | |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | |
dc.identifier.instname | Universidad Tecnológica de Bolívar | |
dc.identifier.reponame | Repositorio UTB | |
dc.description.notes | This work was partially supported by COLCIENCIAS through the National Scholarship Program, calling contest 727-2015, and the PhD program in Engineering of la Universidad Tecnológica de Pereira. | |
dc.relation.conferencedate | 14 November 2018 through 16 November 2018 | |
dc.type.spa | Conferencia | |
dc.identifier.orcid | 56919564100 | |
dc.identifier.orcid | 57208126635 | |
dc.identifier.orcid | 57191493648 | |
dc.identifier.orcid | 57204572827 | |
dc.identifier.orcid | 36449223500 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1460]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.