Mostrar el registro sencillo del ítem

dc.creatorFang, S.P.
dc.creatorJao, P.F.
dc.creatorSenior, D.E.
dc.creatorKim, K.T.
dc.creatorYoon, Y.K.
dc.date.accessioned2019-11-06T19:05:14Z
dc.date.available2019-11-06T19:05:14Z
dc.date.issued2017
dc.identifier.citationMicro and Nano Systems Letters; Vol. 5, Núm. 1
dc.identifier.issn2213-9621
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8738
dc.description.abstractHigh throughput nanomanufacturing of photopatternable nanofibers and subsequent photopatterning is reported. For the production of high density nanofibers, the tube nozzle electrospinning (TNE) process has been used, where an array of micronozzles on the sidewall of a plastic tube are used as spinnerets. By increasing the density of nozzles, the electric fields of adjacent nozzles confine the cone of electrospinning and give a higher density of nanofibers. With TNE, higher density nozzles are easily achievable compared to metallic nozzles, e.g. an inter-nozzle distance as small as 0.5 cm and an average semi-vertical repulsion angle of 12.28° for 8-nozzles were achieved. Nanofiber diameter distribution, mass throughput rate, and growth rate of nanofiber stacks in different operating conditions and with different numbers of nozzles, such as 2, 4 and 8 nozzles, and scalability with single and double tube configurations are discussed. Nanofibers made of SU-8, photopatternable epoxy, have been collected to a thickness of over 80 μm in 240 s of electrospinning and the production rate of 0.75 g/h is achieved using the 2 tube 8 nozzle systems, followed by photolithographic micropatterning. TNE is scalable to a large number of nozzles, and offers high throughput production, plug and play capability with standard electrospinning equipment, and little waste of polymer. © 2017, The Author(s).eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSociety of Micro and Nano Systems
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www2.scopus.com/inward/record.uri?eid=2-s2.0-85041208020&doi=10.1186%2fs40486-017-0044-z&partnerID=40&md5=e60cc441de840e4a107974aa8cd32126
dc.sourceScopus 55369366700
dc.sourceScopus 36698143800
dc.sourceScopus 36698427600
dc.sourceScopus 7409321912
dc.sourceScopus 7402126778
dc.titleStudy on high throughput nanomanufacturing of photopatternable nanofibers using tube nozzle electrospinning with multi-tubes and multi-nozzles
dcterms.bibliographicCitationHuang, Z., A review on polymer nanofibers by electrospinning and their applications in nanocomposites (2003) Compos Sci Technol, 63 (15), pp. 2223-2253
dcterms.bibliographicCitationTeo, W.-E., Inai, R., Ramakrishna, S., Technological advances in electrospinning of nanofibers (2011) Sci Technol Adv Mater, 12 (1), p. 013002
dcterms.bibliographicCitationFang, J., Niu, H., Lin, T., Wang, X., Applications of electrospun nanofibers (2008) Chin Sci Bull, 53 (15), pp. 2265-2286
dcterms.bibliographicCitationSchreuder-Gibson, H., Gibson, P., Senecal, K., Sennett, M., Walker, J., Yeomans, W., Ziegler, D., Tsai, P.P., Protective textile materials based on electrospun nanofibers (2002) J Adv Mater, 34 (3), pp. 44-55
dcterms.bibliographicCitationJao, P.F., Sun, W., Yoon, Y.K., Kim, G.J., (2010) Spatially Controleld Electrospun Solif Gradient Nanofiebrs for Guided Spiral Ganglion Neuron Culture, p. 2. , In Biomedical engineering society annual meeting
dcterms.bibliographicCitationJao, P.F., Machado, M., Cheng, X., Senior, D.E., Kim, G.J., Ding, D., Sun, W., Yoon, Y.K., Fabrication of nanoporous membrane and its nonlithographic patterning using electrospinning and stamp-thru-mold (ESTM) (2011) 2011 IEEE 24Th International Conference on Micro Electro Mechanical Systems, pp. 257-260
dcterms.bibliographicCitationJao, P.F., Cheng, X., Kim, G.J., Yoon, Y.K., Fabrication of a supercapacitor using an electrospun nanofiber based separator and carbon nanofiber electrodes (2012) The 12Th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, p. 4
dcterms.bibliographicCitationJao, P.F., Fang, S.P., David, E.S., Kim, K.T., Yoon, Y.K., Nanomanufacturing of large area carbon nanofibers using tube nozzle electrospinning (TNE), lithography and carbonization processes (2012) In Electronic Components and Technology Conference (ECTC), 2012 IEEE 62Nd, pp. 2075-2081
dcterms.bibliographicCitationYarin, A.L., Koombhongse, S., Reneker, D.H., Bending instability in electrospinning of nanofibers (2001) J Appl Phys, 89 (5), p. 3018
dcterms.bibliographicCitationLuo, C.J., Stoyanov, S.D., Stride, E., Pelan, E., Edirisinghe, M., Electrospinning versus fibre production methods: from specifics to technological convergence (2012) Chem Soc Rev, 41 (13), pp. 4708-4735
dcterms.bibliographicCitationZhou, F.-L., Gong, R.-H., Porat, I., Mass production of nanofibre assemblies by electrostatic spinning (2009) Polym Int, 58 (4), pp. 331-342
dcterms.bibliographicCitationTheron, S.A., Yarin, A.L., Zussman, E., Kroll, E., Multiple jets in electrospinning: experiment and modeling (2005) Polymer, 46 (9), pp. 2889-2899
dcterms.bibliographicCitationTomaszewski, W., Investigation of electrospinning with the use of a multi-jet electrospinning head (2005) Fibres Text East Eur, 13 (4), pp. 22-26
dcterms.bibliographicCitationDosunmu, O.O., Chase, G.G., Kataphinan, W., Reneker, D.H., Electrospinning of polymer nanofibres from multiple jets on a porous tubular surface (2006) Nanotechnology, 17 (4), pp. 1123-1127
dcterms.bibliographicCitationVarabhas, J.S., Chase, G.G., Reneker, D.H., Electrospun nanofibers from a porous hollow tube (2008) Polymer, 49 (19), pp. 4226-4229
dcterms.bibliographicCitationSrivastava, Y., Marquez, M., Thorsen, T., Microfluidic electrospinning of biphasic nanofibers with Janus morphology (2009) Biomicrofluidics, 3 (1), p. 12801
dcterms.bibliographicCitationZhou, F.-L., Gong, R.-H., Porat, I., Polymeric nanofibers via flat spinneret electrospinning (2009) Polym Eng Sci, 49 (12), pp. 2475-2481
dcterms.bibliographicCitationKumar, A., Wei, M., Barry, C., Chen, J., Mead, J., Controlling fiber repulsion in multijet electrospinning for higher throughput (2010) Macromol Mater Eng, 295 (8), pp. 701-708
dcterms.bibliographicCitationKumar, A., Asemota, C., Padilla, J., Invernale, M., Otero, T.F., Sotzing, G.A., Photopatterned conjugated polymer electrochromic nanofibers on paper (2008) J Phys: Conf Ser, 127 (1), p. 12014
dcterms.bibliographicCitationSundararaghavan, H.G., Metter, R.B., Burdick, J.A., Electrospun fibrous scaffolds with multiscale and photopatterned porosity (2010) Macromol Biosci, 10 (3), pp. 265-270
dcterms.bibliographicCitationKim, G., Kim, G.J., Yoon, Y.K., (2010) Lithographic Patterning and Carbonization of Electrospun SU-8 Nanofibers for a High Capacity Electrode, p. 4. , In Proceedings of solid stae sensors actuators and microsystems workshop
dcterms.bibliographicCitationKim, G.J., Kim, G., Yoon, Y.K., Fabrication of high energy density capacitors with micromachined carbon nanofiber electrocdes (2011) The 11Th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, p. 4
dcterms.bibliographicCitationSteach, J.K., Clark, J.E., Olesik, S.V., Optimization of electrospinning an SU-8 negative photoresist to create patterned carbon nanofibers and nanobeads (2010) J Appl Polym Sci, 118 (1), pp. 405-412
dcterms.bibliographicCitationSharma, C.S., Sharma, A., Madou, M., Multiscale carbon structures fabricated by direct micropatterning of electrospun mats of SU-8 photoresist nanofibers (2010) Langmuir, 26 (4), pp. 2218-2222
dcterms.bibliographicCitationBellan, L.M., Craighead, H.G., Control of an electrospinning jet using electric focusing and jet-steering fields (2006) J Vac Sci Technol, B, 24 (6), pp. 3179-3183
dcterms.bibliographicCitationJao, P.F., Franca, E., Fang, S.-P., Wheeler, B.C., Yoon, Y.K., Immersion lithographic patterning of electrospun nanofibers for carbon nanofibrous microelectrode arrays (2015) J Microelectrochem Syst, 24 (3), pp. 703-715
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.1186/s40486-017-0044-z
dc.subject.keywordsHigh throughput
dc.subject.keywordsLarge area electrospinning
dc.subject.keywordsLithographically patterned nanofibers
dc.subject.keywordsMultijet electrospinning
dc.subject.keywordsSU-8 nanofibers
dc.subject.keywordsTube nozzle electrospinning
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.