Mostrar el registro sencillo del ítem

dc.creatorGonzalez-Alvarez, A.
dc.creatorCoronado Hernández, Óscar Enrique
dc.creatorFuertes Miquel, Vicente S.
dc.creatorRamos, H.M.
dc.date.accessioned2019-11-06T19:05:12Z
dc.date.available2019-11-06T19:05:12Z
dc.date.issued2018
dc.identifier.citationFluids; Vol. 3, Núm. 2
dc.identifier.issn2311-5521
dc.identifier.urihttps://hdl.handle.net/20.500.12585/8730
dc.description.abstractThe 24-h maximum rainfall (P 24h-max ) observations recorded at the synoptic weather station of Rafael Núñez airport (Cartagena de Indias, Colombia) were analyzed, and a linear increasing trend over time was identified. It was also noticed that the occurrence of the rainfall value (over the years of record) for a return period of 10 years under stationary conditions (148.1 mm) increased, which evidences a change in rainfall patterns. In these cases, the typical stationary frequency analysis is unable to capture such a change. So, in order to further evaluate rainfall observations, frequency analyses of P 24h-max for stationary and non-stationary conditions were carried out (by using the generalized extreme value distribution). The goodness-of-fit test of Akaike Information Criterion (AIC), with values of 753.3721 and 747.5103 for stationary and non-stationary conditions respectively, showed that the latter best depicts the increasing rainfall pattern. Values of rainfall were later estimated for different return periods (2, 5, 10, 25, 50, and 100 years) to quantify the increase (non-stationary versus stationary condition), which ranged 6% to 12% for return periods from 5 years to 100 years, and 44% for a 2-year return period. The effect of these findings were tested in the Gordo creek watershed by first calculating the resulting direct surface runoff (DSR) for various return periods, and then modeling the hydraulic behavior of the downstream area (composed of a 178.5-m creek's reach and an existing box-culvert located at the watershed outlet) that undergoes flooding events every year. The resulting DSR increase oscillated between 8% and 19% for return periods from 5 to 100 years, and 77% for a 2-year return period when the non-stationary and stationary scenarios were compared. The results of this study shed light upon to the precautions that designers should take when selecting a design, based upon rainfall observed, as it may result in an underestimation of both the direct surface runoff and the size of the hydraulic structures for runoff and flood management throughout the city. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.eng
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI AG
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www2.scopus.com/inward/record.uri?eid=2-s2.0-85063714713&doi=10.3390%2ffluids3020027&partnerID=40&md5=cf64e424fc84a950b089594db6c3ba45
dc.sourceScopus 57208078895
dc.sourceScopus 57193337460
dc.sourceScopus 56074282700
dc.sourceScopus 35568240000
dc.titleEffect of the non-stationarity of rainfall events on the design of hydraulic structures for runoff management and its applications to a case study at Gordo Creek watershed in Cartagena de Indias, Colombia
dcterms.bibliographicCitationFaber, B., Current methods for hydrologic frequency analysis (2010) Proceedings of the Workshop on Nonstationarity, Hydrologic Frequency Analysis, and Water Management, pp. 33-39. , http://www.cwi.colostate.edu/nonstationarityworkshop/index.shtml, Boulder, CO, USA, 13-15 January online: accessed on 21 December 2017
dcterms.bibliographicCitationObeysekera, J., Salas, J.D., Quantifying the uncertainty of design floods under nonstationary conditions (2014) J. Hydrol. Eng., 19, pp. 1438-1446
dcterms.bibliographicCitationWang, D., Hagen, S.C., Alizad, K., Climate change impact and uncertainty analysis of extreme rainfall events in the Apalachicola River basin, Florida (2012) J. Hydrol., 480, pp. 125-135
dcterms.bibliographicCitationSalas, J.D., Obeysekera, J., Vogel, R.M., Techniques for assessing water infrastructure for nonstationary extreme events: A review (2018) Hydrol. Sci. J.
dcterms.bibliographicCitation(2017) Resolution 0330 of 8 June 2017, Technical Guidelines for the Sector of Potable Water and Basic Sanitation (RAS), , http://www.minvivienda.gov.co/ResolucionesAgua/0330%20-%202017.pdf, Ministry of Housing, City, and Development MinVivienda
dcterms.bibliographicCitationRepublic of Colombia. online: accessed on 28 October 2017
dcterms.bibliographicCitationPoveda, G., Alvarez, D.M., The collapse of the stationarity hypothesis due to climate change and climate variability: Implications for hydrologic engineering design (2012) Rev. Ing. Univ. Andes, 36, pp. 65-76
dcterms.bibliographicCitation(2015) New Scenarios of Climate Change for Colombia 2011-2100 Scientific Tools for Deparment-Based Decision Making-National Emphasis: 3rd National Bulletin on Climate Change, , http://documentacion.ideam.gov.co/openbiblio/bvirtual/022964/documento_nacional_departamental.pdf, IDEAM, PNUD, MADS, DNP, CANCILLERÍA. online: accessed on 28 October 2017
dcterms.bibliographicCitationChow, V.T., Maidment, D.R., Mays, L.W., (1988) Applied Hydrology, pp. 350-376. , 1st ed.
dcterms.bibliographicCitationMcGraw-Hill: New York, NY, USA
dcterms.bibliographicCitationPalutikof, J.P., Brabson, B.B., Lister, D.H., Adcock, S.T., A review of methods to calculate extreme wind speeds (1999) Meteorol. Appl., 6, pp. 119-132
dcterms.bibliographicCitationWilks, D.S., (2011) Statistical Methods in the Atmospheric Sciences, pp. 105-110. , 3rd ed.
dcterms.bibliographicCitationAcademic Press: Oxford, UK
dcterms.bibliographicCitationWaltham, MA, USA
dcterms.bibliographicCitationGumbel, E.J., The return period of flood flows (1941) Ann. Math. Stat., 2, pp. 163-190
dcterms.bibliographicCitationFrechet, M., Sur la loi de probabilité de l'ecart máximum (On the probability law of maximum values) (1927) Ann Soc. Pol. Math., 6, pp. 93-116
dcterms.bibliographicCitationWeibull, W., A statistical theory of the strength of materials (1939) Proceedings of the Ingeniors Vetenskaps Akademien, (51), pp. 5-45. , http://www.scirp.org/%28S%28czeh2tfqyw2orz553k1w0r45%29%29/reference/ReferencesPapers.aspx?ReferenceID=1923153, The Royal Swedish Institute for Engineering Research. Stockholm, Sweden
dcterms.bibliographicCitationonline: accessed on 19 April 2018
dcterms.bibliographicCitationPearson, K., On the systemic fitting of curves to observations and measurements (1902) Biometrika, 1, pp. 265-303
dcterms.bibliographicCitationKolmogorov, A.N., Sulla determinazione empirica di una legge di distribuzione (1933) G. Inst. Ital. Attuari, 4, pp. 83-91
dcterms.bibliographicCitationSmirnov, N.V., Estimate of deviation between empirical distribution functions in two independent samples (1939) Bull. Moscow Univ., 2, pp. 3-16
dcterms.bibliographicCitationSmirnov, N.V., Table for estimating the goodness of fit of empirical distributions (1948) Ann. Math. Stat., 19, pp. 279-281
dcterms.bibliographicCitationObeysekera, J., Salas, J.D., Frequency of recurrent extremes under nonstationarity (2016) J. Hydrol. Eng. ASCE, 21
dcterms.bibliographicCitationAkaike, H., A new look at the statistical model identification (1974) IEEE Trans. Autom. Control, 19, pp. 716-723
dcterms.bibliographicCitation(1985) National Engineering Handbook, Section 4, Hydrology (NEH-4), , https://policy.nrcs.usda.gov/OpenNonWebContent.aspx?content=18393.wba, USDA-SCS: Washington, DC, USA, online: accessed on 17 November 2017
dcterms.bibliographicCitation(1986) Conservation Engineering Division. Urban Hydrology for Small Watersheds, Technical Release 55 (TR-55), , https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf, USDA-NRCS: Washington, DC, USA, online: accessed on 19 December 2017
dcterms.bibliographicCitationMishra, S.K., Singh, V., (2003) Soil Conservation Service Curve Number (SCS-CN) Methodology, , 1st ed.
dcterms.bibliographicCitationSpringer: Dordrecht, The Netherlands
dcterms.bibliographicCitationPonce, V.M., Hawkins, R.H., Runoff curve number: Has it reached maturity? (1996) J. Hydrol. Eng. ASCE, 1, pp. 11-19
dcterms.bibliographicCitationGericke, O.J., Smithers, J.C., Review of methods used to estimate catchment response time for the purpose of peak discharge estimation (2014) Hydrol. Sci. J., 59, pp. 1935-1971
dcterms.bibliographicCitationSharifi, S., Hosseini, S.M., Methodology for identifying the best equations for estimating the time of concentration of watersheds in a particular region (2011) J. Irrig. Drain. Eng. ASCE, 137
dcterms.bibliographicCitationKirpich, Z.P., Time of concentration of small agricultural watersheds (1940) Civ. Eng., 10, pp. 362-368
dcterms.bibliographicCitationGonzalez, A., Temimi, M., Khanbilvardi, R., Adjustment to the curve number (NRCS-CN) to account for the vegetation effect on hydrological processes (2015) Hydrol. Sci. J., 60, pp. 591-605
dcterms.bibliographicCitation(1960) Flood-Frequency Analyses, Manual of Hydrology: Part 3, Flood-Flow Techniques, , https://pubs.usgs.gov/wsp/1543a/report.pdf, Government Printing Office: Washington, DC, USA, online: accessed on 17 December 2017
dcterms.bibliographicCitation(1965) Theoretical Implications of Under Fit Streams, Flood-Flow Techniques, , https://pubs.usgs.gov/pp/0452c/report.pdf, Government Printing Office: Washington, DC, USA, online: accessed on 17 December 2017
dcterms.bibliographicCitationMohammed, E.A., Far, B.H., Emerging Business Intelligence Framework for a Clinical Laboratory Through Big Data Analytics 2015, pp. 577-602. , https://doi.org/10.1016/B978-0-12802508-6.00032-6, Chapter 32.. online: accessed on 28 January 2018
dcterms.bibliographicCitationRamos, H.M., Pérez-Sánchez, M., Franco, A.B., López-Jiménez, P.A., Urban floods adaptation and sustainable drainage measures (2017) Fluids, 2, p. 61
dcterms.bibliographicCitation(2012) Guidelines for the Design and Construction of Stormwater Management Systems, , http://www.nyc.gov/html/dep/pdf/green_infrastructure/stormwater_guidelines_2012_final.pdf, New York City Department of Environmental Protection. New York City Department of Environmental Protection: New York, NY, USA, online: accessed on 4 January 2018
datacite.rightshttp://purl.org/coar/access_right/c_abf2
oaire.resourceTypehttp://purl.org/coar/resource_type/c_6501
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driverinfo:eu-repo/semantics/article
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dc.identifier.doi10.3390/fluids3020027
dc.subject.keywordsClimate change
dc.subject.keywordsNon-stationary
dc.subject.keywordsRainfall frequency analysis
dc.subject.keywordsRunoff management
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.reponameRepositorio UTB
dc.type.spaArtículo


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.