Mostrar el registro sencillo del ítem

dc.contributor.authorMarrugo-Tobón, Duván Andres
dc.contributor.authorMartinez-Santos, Juan Carlos
dc.contributor.authorPuertas, Edwin
dc.date.accessioned2023-12-05T18:16:47Z
dc.date.available2023-12-05T18:16:47Z
dc.date.issued2023-12-05
dc.date.submitted2023-12-05
dc.identifier.citationMarrugo-Tobón, D., Martınez-Santos, J., & Puerta, E. (2023). Natural language content evaluation system for multiclass detection of hate speech in tweets using transformers. In Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2023).spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12581
dc.description.abstractIn natural language processing, accurate categorization of tweets, including detecting hate speech, plays a pivotal role in efficient information organization and analysis. This paper presents a Natural Language Contents Evaluation System specifically tailored for multi-class tweet categorization, focusing on hate speech detection. Our system enhances classification accuracy and efficiency by harnessing the power of Transformers, namely BERT and DistilBERT. By leveraging feature extraction techniques, we capture pertinent information from tweets, enabling practical analysis, categorization, and identification of hate speech instances. During training, we also tackle imbalanced corpora by employing techniques to ensure fair representation of different tweet categories, including hate speech. Our system achieves impressive accuracy through extensive training of 95%, showcasing Transformers' effectiveness in comprehending and categorizing tweets, including identifying hate speech. Furthermore, our system maintains a good accuracy during testing of 83%, highlighting the robustness and generalizability of the trained models for hate speech detection. This system contributes to advancing automated tweet categorization, specifically in hate speech detection, providing a reliable and efficient solution for organizing and analyzing diverse tweet datasets.spa
dc.description.sponsorshipUniversidad Tecnología de Bolívarspa
dc.format.extent12 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceIberian Languages Evaluation Forumspa
dc.titleNatural language content evaluation system for multiclass detection of hate speech in tweets using transformersspa
dcterms.bibliographicCitationKim, H., & Jeong, Y. S. (2019). Sentiment classification using convolutional neural networks. Applied Sciences, 9(11), 2347.spa
dcterms.bibliographicCitationGalas, M. (2015). Experimental Computational Simulation Environments for Big Data Analytic in Social Sciences. In Handbook of Statistics (Vol. 33, pp. 259-277). Elsevier.spa
dcterms.bibliographicCitationAbro, S., Shaikh, S., Khand, Z. H., Zafar, A., Khan, S., & Mujtaba, G. (2020). Automatic hate speech detection using machine learning: A comparative study. International Journal of Advanced Computer Science and Applications, 11(8).spa
dcterms.bibliographicCitationAlkomah, F., & Ma, X. (2022). A literature review of textual hate speech detection methods and datasets. Information, 13(6), 273.spa
dcterms.bibliographicCitationDevlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.spa
dcterms.bibliographicCitationSanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.spa
dcterms.bibliographicCitationMadni, H. A., Umer, M., Abuzinadah, N., Hu, Y. C., Saidani, O., Alsubai, S., ... & Ashraf, I. (2023). Improving Sentiment Prediction of Textual Tweets Using Feature Fusion and Deep Machine Ensemble Model. Electronics, 12(6), 1302.spa
dcterms.bibliographicCitationTan, K. L., Lee, C. P., & Lim, K. M. (2023). A survey of sentiment analysis: Approaches, datasets, and future research. Applied Sciences, 13(7), 4550.spa
dcterms.bibliographicCitationTan, K. L., Lee, C. P., & Lim, K. M. (2023). A survey of sentiment analysis: Approaches, datasets, and future research. Applied Sciences, 13(7), 4550.spa
dcterms.bibliographicCitationSeveryn, A., & Moschitti, A. (2015, August). Twitter sentiment analysis with deep convolutional neural networks. In Proceedings of the 38th international ACM SIGIR conference on research and development in information retrieval (pp. 959-962).spa
dcterms.bibliographicCitationPilar, G. D., Isabel, S. B., Diego, P. M., & Luis, G. A. J. (2023). A novel flexible feature extraction algorithm for Spanish tweet sentiment analysis based on the context of words. Expert Systems with Applications, 212, 118817.spa
dcterms.bibliographicCitationBehera, R. K., Jena, M., Rath, S. K., & Misra, S. (2021). Co-LSTM: Convolutional LSTM model for sentiment analysis in social big data. Information Processing & Management, 58(1), 102435.spa
dcterms.bibliographicCitationElreedy, D., & Atiya, A. F. (2019). A comprehensive analysis of synthetic minority oversampling technique (SMOTE) for handling class imbalance. Information Sciences, 505, 32-64.spa
dcterms.bibliographicCitationHussein, A. S., Li, T., Abd Ali, D. M., Bashir, K., & Yohannese, C. W. (2020). A modified adaptive synthetic sampling method for learning imbalanced datasets. In Developments of Artificial Intelligence Technologies in Computation and Robotics: Proceedings of the 14th International FLINS Conference (FLINS 2020) (pp. 76-83).spa
dcterms.bibliographicCitationAloraini, M., Khan, A., Aladhadh, S., Habib, S., Alsharekh, M. F., & Islam, M. (2023). Combining the Transformer and Convolution for Effective Brain Tumor Classification Using MRI Images. Applied Sciences, 13(6), 3680.spa
dcterms.bibliographicCitationJang, B., Kim, M., Harerimana, G., Kang, S. U., & Kim, J. W. (2020). Bi-LSTM model to increase accuracy in text classification: Combining Word2vec CNN and attention mechanism. Applied Sciences, 10(17), 5841.spa
dcterms.bibliographicCitationBel-Enguix, G., Gómez-Adorno, H., Sierra, G., Vásquez, J., Andersen, S. T., & Ojeda-Trueba, S. (2023). Overview of HOMO-MEX at Iberlef 2023: Hate speech detection in Online Messages directed Towards the MEXican Spanish speaking LGBTQ+ population. Procesamiento del lenguaje natural, 71, 361-370.spa
dcterms.bibliographicCitationEler, D. M., Grosa, D., Pola, I., Garcia, R., Correia, R., & Teixeira, J. (2018). Analysis of document pre-processing effects in text and opinion mining. Information, 9(4), 100.spa
dcterms.bibliographicCitationHuerta-Velasco, D. A., & Calvo, H. (2022). Verbal Aggressions Detection in Mexican Tweets. Computación y Sistemas, 26(1), 261-269.spa
dcterms.bibliographicCitationSilva Barbon, R., & Akabane, A. T. (2022). Towards Transfer Learning Techniques—BERT, DistilBERT, BERTimbau, and DistilBERTimbau for Automatic Text Classification from Different Languages: A Case Study. Sensors, 22(21), 8184.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.identifier.urlhttps://ceur-ws.org/Vol-3496/homomex-paper4.pdf
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.subject.keywordsBERTspa
dc.subject.keywordsDistilBERTspa
dc.subject.keywordsFeature extractionspa
dc.subject.keywordsHate speech detectionspa
dc.subject.keywordsNatural language processingspa
dc.subject.keywordsTransformersspa
dc.subject.keywordsTweet categorizationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa
dc.publisher.disciplineMaestría en Ingenieríaspa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.