Resumen
In natural language processing, accurate categorization of tweets, including detecting hate speech, plays a pivotal role in efficient information organization and analysis. This paper presents a Natural Language Contents Evaluation System specifically tailored for multi-class tweet categorization, focusing on hate speech detection. Our system enhances classification accuracy and efficiency by harnessing the power of Transformers, namely BERT and DistilBERT. By leveraging feature extraction techniques, we capture pertinent information from tweets, enabling practical analysis, categorization, and identification of hate speech instances. During training, we also tackle imbalanced corpora by employing techniques to ensure fair representation of different tweet categories, including hate speech. Our system achieves impressive accuracy through extensive training of 95%, showcasing Transformers' effectiveness in comprehending and categorizing tweets, including identifying hate speech. Furthermore, our system maintains a good accuracy during testing of 83%, highlighting the robustness and generalizability of the trained models for hate speech detection. This system contributes to advancing automated tweet categorization, specifically in hate speech detection, providing a reliable and efficient solution for organizing and analyzing diverse tweet datasets.