Mostrar el registro sencillo del ítem

dc.contributor.authorMedina-Quesada, Ángeles
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorHernández, Jesus C.
dc.date.accessioned2023-07-21T16:23:12Z
dc.date.available2023-07-21T16:23:12Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationMedina-Quesada, Á., Montoya, O. D., & Hernández, J. C. (2022). Derivative-free power flow solution for bipolar DC networks with multiple constant power terminals. Sensors, 22(8), 2914.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12332
dc.description.abstractThis paper analyzes the power flow solution in bipolar direct current networks with radial structures considering multiple monopolar and bipolar constant power loads. The electrical configuration of the bipolar DC grid considers that the reference pole is non-grounded along the feeder, which produces important neutral currents and voltage imbalances along the DC grid. The power flow problem is formulated through the triangular-based representation of the grid topology, which generates a recursive formulation that allows determining the voltage values in the demand nodes through an iterative procedure. The linear convergence of the triangular-based power flow method is tested through multiple load variations with respect to the nominal grid operative condition. Numerical results in the 21-and the 85-bus grids reveal the relevant variations in the voltage profiles and total grid power losses when the neutral cable is solidly grounded or not. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.spa
dc.format.extent13 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSensorsspa
dc.titleDerivative-Free Power Flow Solution for Bipolar DC Networks with Multiple Constant Power Terminalsspa
dcterms.bibliographicCitationMackay, L., Blij, N.H.V.D., Ramirez-Elizondo, L., Bauer, P. Toward the Universal DC Distribution System (2017) Electric Power Components and Systems, 45 (10), pp. 1032-1042. Cited 61 times. www.tandf.co.uk/journals/titles/15325008.asp doi: 10.1080/15325008.2017.1318977spa
dcterms.bibliographicCitationMontoya, O.D. Numerical Approximation of the Maximum Power Consumption in DC-MGs with CPLs via an SDP Model (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (4), art. no. 8443095, pp. 642-646. Cited 28 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2018.2866447spa
dcterms.bibliographicCitationParhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S. State of the art in research on microgrids: A review (Open Access) (2015) IEEE Access, 3, art. no. 07120901, pp. 890-925. Cited 759 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2015.2443119spa
dcterms.bibliographicCitationSiraj, K., Khan, H.A. DC distribution for residential power networks—A framework to analyze the impact of voltage levels on energy efficiency (Open Access) (2020) Energy Reports, 6, pp. 944-951. Cited 43 times. http://www.journals.elsevier.com/energy-reports/ doi: 10.1016/j.egyr.2020.04.018spa
dcterms.bibliographicCitationLi, B., Wang, W., Liu, Y., Li, B., Wen, W. Research on power flow calculation method of true bipolar VSC-HVDC grids with different operation modes and control strategies (Open Access) (2021) International Journal of Electrical Power and Energy Systems, Part A 126, art. no. 106558. Cited 18 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2020.106558spa
dcterms.bibliographicCitationZhu, H., Zhu, M., Zhang, J., Cai, X., Dai, N. Topology and operation mechanism of monopolarto-bipolar DC-DC converter interface for DC grid (Open Access) (2016) 2016 IEEE 8th International Power Electronics and Motion Control Conference, IPEMC-ECCE Asia 2016, art. no. 7512892, pp. 3728-3733. Cited 9 times. ISBN: 978-150901210-7 doi: 10.1109/IPEMC.2016.7512892spa
dcterms.bibliographicCitationGuo, C., Wang, Y., Liao, J. Coordinated Control of Voltage Balancers for the Regulation of Unbalanced Voltage in a Multi‐Node Bipolar DC Distribution Network (Open Access) (2022) Electronics (Switzerland), 11 (1), art. no. 166. Cited 12 times. https://www.mdpi.com/2079-9292/11/1/166/pdf doi: 10.3390/electronics11010166spa
dcterms.bibliographicCitationGarces, A. Uniqueness of the power flow solutions in low voltage direct current grids (2017) Electric Power Systems Research, 151, pp. 149-153. Cited 92 times. doi: 10.1016/j.epsr.2017.05.031spa
dcterms.bibliographicCitationChew, B.S.H., Xu, Y., Wu, Q. Voltage Balancing for Bipolar DC Distribution Grids: A Power Flow Based Binary Integer Multi-Objective Optimization Approach (Open Access) (2019) IEEE Transactions on Power Systems, 34 (1), art. no. 8444703, pp. 28-39. Cited 48 times. https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=59 doi: 10.1109/TPWRS.2018.2866817spa
dcterms.bibliographicCitationLee, J.-O., Kim, Y.-S., Moon, S.-I. Current Injection Power Flow Analysis and Optimal Generation Dispatch for Bipolar DC Microgrids (Open Access) (2021) IEEE Transactions on Smart Grid, 12 (3), art. no. 9308969, pp. 1918-1928. Cited 23 times. https://ieeexplore.ieee.org/servlet/opac?punumber=5165411 doi: 10.1109/TSG.2020.3046733spa
dcterms.bibliographicCitationRivera, S., Lizana F., R., Kouro, S., Dragicevic, T., Wu, B. Bipolar DC Power Conversion: State-of-the-Art and Emerging Technologies (2021) IEEE Journal of Emerging and Selected Topics in Power Electronics, 9 (2), art. no. 9036877, pp. 1192-1204. Cited 56 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6245517 doi: 10.1109/JESTPE.2020.2980994spa
dcterms.bibliographicCitationLitrán, S.P., Durán, E., Semião, J., Barroso, R.S. Single-switch bipolar output dc-dc converter for photovoltaic application (2020) Electronics (Switzerland), 9 (7), art. no. 1171, pp. 1-14. Cited 8 times. https://www.mdpi.com/2079-9292/9/7/1171/pdf doi: 10.3390/electronics9071171spa
dcterms.bibliographicCitationJavid, Z., Karaagac, U., Kocar, I., Chan, K.W. Laplacian matrix-based power flow formulation for LVDC grids with radial and meshed configurations (Open Access) (2021) Energies, 14 (7), art. no. 1866. Cited 7 times. https://www.mdpi.com/1996-1073/14/7/1866/pdf doi: 10.3390/en14071866spa
dcterms.bibliographicCitationSimpson-Porco, J.W., Dörfler, F., Bullo, F. On Resistive Networks of Constant-Power Devices (2015) IEEE Transactions on Circuits and Systems II: Express Briefs, 62 (8), art. no. 7108029, pp. 811-815. Cited 60 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2015.2433537spa
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W., Garces, A. Numerical methods for power flow analysis in DC networks: State of the art, methods and challenges (Open Access) (2020) International Journal of Electrical Power and Energy Systems, 123, art. no. 106299. Cited 28 times. https://www.journals.elsevier.com/international-journal-of-electrical-power-and-energy-systems doi: 10.1016/j.ijepes.2020.106299spa
dcterms.bibliographicCitationMontoya, O.D., Grisales-Norena, L.F., Gil-Gonzalez, W. Triangular Matrix Formulation for Power Flow Analysis in Radial DC Resistive Grids with CPLs (Open Access) (2020) IEEE Transactions on Circuits and Systems II: Express Briefs, 67 (6), art. no. 8756198, pp. 1094-1098. Cited 13 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2927290spa
dcterms.bibliographicCitationKim, J., Cho, J., Kim, H., Cho, Y., Lee, H. Power Flow Calculation Method of DC Distribution Network for Actual Power System (2020) KEPCO J. Electr. Power Energy, 6, pp. 419-425. Cited 7 times. [CrossRef]spa
dcterms.bibliographicCitationMacKay, L., Guarnotta, R., Dimou, A., Morales-España, G., Ramirez-Elizondo, L., Bauer, P. Optimal power flow for unbalanced bipolar DC distribution grids (2018) IEEE Access, 6, pp. 5199-5207. Cited 27 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2789522spa
dcterms.bibliographicCitationGarces, A. On the convergence of Newton's method in power flow studies for dc microgrids (Open Access) (2018) IEEE Transactions on Power Systems, 33 (5), art. no. 8327530, pp. 5770-5777. Cited 119 times. doi: 10.1109/TPWRS.2018.2820430spa
dcterms.bibliographicCitationTamilselvan, V., Jayabarathi, T., Raghunathan, T., Yang, X.-S. Optimal capacitor placement in radial distribution systems using flower pollination algorithm (Open Access) (2018) Alexandria Engineering Journal, 57 (4), pp. 2775-2786. Cited 90 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/724292/description#description doi: 10.1016/j.aej.2018.01.004spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/s22082914
dc.subject.keywordsMicrogrid;spa
dc.subject.keywordsDC-DC Converter;spa
dc.subject.keywordsElectric Potentialspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.