Mostrar el registro sencillo del ítem

dc.contributor.authorRosales Muñoz, Andrés Alfonso
dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorMontano, Jhon
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorPerea-Moreno, Alberto-Jesus
dc.date.accessioned2023-07-21T15:43:24Z
dc.date.available2023-07-21T15:43:24Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationRosales Muñoz, A.A.; Grisales-Noreña, L.F.; Montano, J.; Montoya, O.D.; Perea-Moreno, A.-J. Application of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networks. Electronics 2022, 11, 1287. https://doi.org/10.3390/electronics11081287spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12277
dc.description.abstractIn this paper, we solve the optimal power flow problem in alternating current networks to reduce power losses. For that purpose, we propose a master–slave methodology that combines the multiverse optimization algorithm (master stage) and the power flow method for alternating current networks based on successive approximation (slave stage). The master stage determines the level of active power to be injected by each distributed generator in the network, and the slave stage evaluates the impact of the proposed solution on each distributed generator in terms of the objective function and the constraints. For the simulations, we used the 10-, 33-, and 69-node radial test systems and the 10-node mesh test system with three levels of distributed generation penetration: 20%, 40%, and 60% of the power provided by the slack generator in a scenario without DGs. In order to validate the robustness and convergence of the proposed optimization algorithm, we compared it with four other optimization methods that have been reported in the specialized literature to solve the problem addressed here: Particle Swarm Optimization, the Continuous Genetic Algorithm, the Black Hole Optimization algorithm, and the Ant Lion Optimization algorithm. The results obtained demonstrate that the proposed master–slave methodology can find the best solution (in terms of power loss reduction, repeatability, and technical conditions) for networks of any size while offering excellent performance in terms of computation time. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.spa
dc.format.extent33 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceElectronics Volume 11, Issue 8spa
dc.titleApplication of the Multiverse Optimization Method to Solve the Optimal Power Flow Problem in Alternating Current Networksspa
dcterms.bibliographicCitationGurven, M., Walker, R. Energetic demand of multiple dependents and the evolution of slow human growth (2006) Proceedings of the Royal Society B: Biological Sciences, 273 (1588), pp. 835-841. Cited 119 times. http://rspb.royalsocietypublishing.org/ doi: 10.1098/rspb.2005.3380spa
dcterms.bibliographicCitationMurillo, J., Trejos, A., OLAYA, P.C. Estudio del pronóstico de la demanda de energía eléctrica, utilizando modelos de series de tiempo (2003) Sci. Tech, 3, pp. 1-6. Cited 7 times. https://doi.org/10.22517/23447214.7379spa
dcterms.bibliographicCitationReiss, P.C., White, M.W. Household electricity demand, revisited (2005) Review of Economic Studies, 72 (3), pp. 853-883. Cited 336 times. doi: 10.1111/0034-6527.00354spa
dcterms.bibliographicCitationHalvorsen, R. Demand for electric energy in the United States (1976) South. Econ. J, 42, pp. 610-625. Cited 31 times.spa
dcterms.bibliographicCitationBull, S.R. Renewable energy today and tomorrow (2001) Proceedings of the IEEE, 89 (8), pp. 1216-1226. Cited 469 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5 doi: 10.1109/5.940290spa
dcterms.bibliographicCitationMachol, B., Rizk, S. Economic value of U.S. fossil fuel electricity health impacts (2013) Environment International, 52, pp. 75-80. Cited 90 times. www.elsevier.com/locate/envint doi: 10.1016/j.envint.2012.03.003spa
dcterms.bibliographicCitationZhang, N., Zhou, P., Choi, Y. Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis (2013) Energy Policy, 56, pp. 653-662. Cited 276 times. doi: 10.1016/j.enpol.2013.01.033spa
dcterms.bibliographicCitationMuñoz, A.A.R., Grisales-Noreña, L.F., Montano, J., Montoya, O.D., Giral-Ramírez, D.A. Optimal power dispatch of distributed generators in direct current networks using a master–slave methodology that combines the salp swarm algorithm and the successive approximation method (2021) Electronics (Switzerland), 10 (22), art. no. 2837. Cited 6 times. https://www.mdpi.com/2079-9292/10/22/2837/pdf doi: 10.3390/electronics10222837spa
dcterms.bibliographicCitationRosales-Muñoz, A.A., Grisales-Noreña, L.F., Montano, J., Montoya, O.D., Perea-Moreno, A.-J. Application of the multiverse optimization method to solve the optimal power flow problem in direct current electrical networks (2021) Sustainability (Switzerland), 13 (16), art. no. 8703. Cited 11 times. https://www.mdpi.com/2071-1050/13/16/8703/pdf doi: 10.3390/su13168703spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Montoya, D.G., Ramos-Paja, C.A. Optimal sizing and location of distributed generators based on PBIL and PSO techniques (2018) Energies, 11 (4), art. no. en11041018. Cited 98 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en11041018spa
dcterms.bibliographicCitationGrisales, L.F., Restrepo Cuestas, B.J. Ubicación y dimensionamiento de generación distribuida: Una revisión (2017) Cienc. Ing. Neogranadina, 27, pp. 157-176. Cited 15 times.spa
dcterms.bibliographicCitationGrisales-Noreña, L.F., Ramos-Paja, C.A., Gonzalez-Montoya, D., Alcalá, G., Hernandez-Escobedo, Q. Energy management in PV based microgrids designed for the Universidad Nacional de Colombia (2020) Sustainability (Switzerland), 12 (3), art. no. 1219. Cited 17 times. https://res.mdpi.com/d_attachment/sustainability/sustainability-12-01219/article_deploy/sustainability-12-01219-v2.pdf doi: 10.3390/su12031219spa
dcterms.bibliographicCitationFranck, C.M. HVDC circuit breakers: A review identifying future research needs (2011) IEEE Transactions on Power Delivery, 26 (2), art. no. 5686894, pp. 998-1007. Cited 899 times. doi: 10.1109/TPWRD.2010.2095889spa
dcterms.bibliographicCitationOcampo-Toro, J.A., Garzon-Rivera, O.D., Grisales-Noreña, L.F., Montoya-Giraldo, O.D., Gil-González, W. Optimal Power Dispatch in Direct Current Networks to Reduce Energy Production Costs and CO 2 Emissions Using the Antlion Optimization Algorithm (2021) Arabian Journal for Science and Engineering, 46 (10), pp. 9995-10006. Cited 4 times. https://link.springer.com/journal/13369 doi: 10.1007/s13369-021-05831-0spa
dcterms.bibliographicCitationGrisales, L.F., Grajales, A., Montoya, O.D., Hincapie, R.A., Granada, M., Castro, C.A. Optimal location, sizing and operation of energy storage in distribution systems using multi-objective approach (2017) IEEE Latin America Transactions, 15 (6), art. no. 7932696, pp. 1084-1090. Cited 24 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9907 doi: 10.1109/TLA.2017.7932696spa
dcterms.bibliographicCitationMontoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A. Linear power flow formulation for low-voltage DC power grids (2018) Electric Power Systems Research, Part A 163, pp. 375-381. Cited 79 times. doi: 10.1016/j.epsr.2018.07.003spa
dcterms.bibliographicCitationDommel, H.W., Tinney, W.F. Optimal Power Flow Solutions (Open Access) (1968) IEEE Transactions on Power Apparatus and Systems, PAS-87 (10), pp. 1866-1876. Cited 1270 times. doi: 10.1109/TPAS.1968.292150spa
dcterms.bibliographicCitationAlsac, O., Stott, B. Optimal load flow with steady-state security (Open Access) (1974) IEEE Transactions on Power Apparatus and Systems, PAS-93 (3), pp. 745-751. Cited 642 times. doi: 10.1109/TPAS.1974.293972spa
dcterms.bibliographicCitationAli, E.S., Abd Elazim, S.M., Abdelaziz, A.Y. Ant Lion Optimization Algorithm for renewable Distributed Generations (2016) Energy, Part 1 116, pp. 445-458. Cited 213 times. www.elsevier.com/inca/publications/store/4/8/3/ doi: 10.1016/j.energy.2016.09.104spa
dcterms.bibliographicCitationMontoya, O.D., Molina-Cabrera, A., Chamorro, H.R., Alvarado-Barrios, L., Rivas-Trujillo, E. A hybrid approach based on socp and the discrete version of the sca for optimal placement and sizing dgs in ac distribution networks (Open Access) (2021) Electronics (Switzerland), 10 (1), art. no. 26, pp. 1-19. Cited 12 times. https://www.mdpi.com/2079-9292/10/1/26/pdf doi: 10.3390/electronics10010026spa
dcterms.bibliographicCitationBernal-Romero, D.L., Montoya, O.D., Arias-Londoño, A. Solution of the optimal reactive power flow problem using a discrete-continuous cbga implemented in the digsilent programming language (2021) Computers, 10 (11), art. no. 151. Cited 8 times. https://www.mdpi.com/2073-431X/10/11/151/pdf doi: 10.3390/computers10110151spa
dcterms.bibliographicCitationLashkar Ara, A., Kazemi, A., Gahramani, S., Behshad, M. Optimal reactive power flow using multi-objective mathematical programming (Open Access) (2012) Scientia Iranica, 19 (6), pp. 1829-1836. Cited 48 times. scientiairanica.sharif.edu doi: 10.1016/j.scient.2012.07.010spa
dcterms.bibliographicCitationBhattacharya, A., Chattopadhyay, P.K. Solution of optimal reactive power flow using biogeography-based optimization (2010) Int. J. Electr. Electron. Eng, 4, pp. 568-576. Cited 92 times.spa
dcterms.bibliographicCitationAyan, K., Kiliç, U. Artificial bee colony algorithm solution for optimal reactive power flow (Open Access) (2012) Applied Soft Computing Journal, 12 (5), pp. 1477-1482. Cited 170 times. doi: 10.1016/j.asoc.2012.01.006spa
dcterms.bibliographicCitationGutiérrez, D., Villa, W.M., López-Lezama, J.M. Optimal reactive power dispatch by means of particle swarm optimization (Open Access) (2017) Informacion Tecnologica, 28 (5), pp. 215-224. Cited 8 times. http://www.scielo.cl/pdf/infotec/v28n5/art20.pdf doi: 10.4067/S0718-07642017000500020spa
dcterms.bibliographicCitationMahmoud, K., Yorino, N., Ahmed, A. Optimal Distributed Generation Allocation in Distribution Systems for Loss Minimization (2016) IEEE Transactions on Power Systems, 31 (2), art. no. 7091050, pp. 960-969. Cited 287 times. doi: 10.1109/TPWRS.2015.2418333spa
dcterms.bibliographicCitationMosbah, M., Zine, R., Arif, S., Mohammedi, R.D., Bacha, S. Optimal Power Flow for Transmission System with Photovoltaic Based DG Using Biogeography-Based Optimization (2019) Proceedings of 2018 3rd International Conference on Electrical Sciences and Technologies in Maghreb, CISTEM 2018, art. no. 8613610. Cited 9 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8593337 ISBN: 978-153864987-9 doi: 10.1109/CISTEM.2018.8613610spa
dcterms.bibliographicCitationMontoya, O.D., Giral-Ramirez, D.A., Grisales-Norena, L.F. Black hole optimizer for the optimal power injection in distribution networks using DG (2021) Journal of Physics: Conference Series, 2135 (1), art. no. 012010. Cited 2 times. http://iopscience.iop.org/journal/1742-6596 doi: 10.1088/1742-6596/2135/1/012010spa
dcterms.bibliographicCitationWang, P., Wang, W., Xu, D. Optimal sizing of distributed generations in DC microgrids with comprehensive consideration of system operation modes and operation targets (2018) IEEE Access, 6, pp. 31129-31140. Cited 52 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2018.2842119spa
dcterms.bibliographicCitationManrique, M.L., Montoya, O.D., Garrido, V.M., Grisales-Noreña, L.F., Gil-González, W. Sine-Cosine Algorithm for OPF Analysis in Distribution Systems to Size Distributed Generators (2019) Communications in Computer and Information Science, 1052, pp. 28-39. Cited 10 times. http://www.springer.com/series/7899 ISBN: 978-303031018-9 doi: 10.1007/978-3-030-31019-6_3spa
dcterms.bibliographicCitationMirjalili, S., Mirjalili, S.M., Hatamlou, A. Multi-Verse Optimizer: a nature-inspired algorithm for global optimization (2016) Neural Computing and Applications, 27 (2), pp. 495-513. Cited 1634 times. http://link.springer.com/journal/521 doi: 10.1007/s00521-015-1870-7spa
dcterms.bibliographicCitationTrivedi, I.N., Jangir, P., Jangir, N., Parmar, S.A., Bhoye, M., Kumar, A. Voltage stability enhancement and voltage deviation minimization using multi-verse optimizer algorithm (2016) Proceedings of IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT 2016, art. no. 7530136. Cited 19 times. ISBN: 978-150901277-0 doi: 10.1109/ICCPCT.2016.7530136spa
dcterms.bibliographicCitationCeylan, O. Multi-verse optimization algorithm- and salp swarm optimization algorithm-based optimization of multilevel inverters (Open Access) (2021) Neural Computing and Applications, 33 (6), pp. 1935-1950. Cited 7 times. http://link.springer.com/journal/521 doi: 10.1007/s00521-020-05062-8spa
dcterms.bibliographicCitationKumar, A., Suhag, S. Multiverse optimized fuzzy-PID controller with a derivative filter for load frequency control of multisource hydrothermal power system (2017) Turkish Journal of Electrical Engineering and Computer Sciences, 25 (5), pp. 4187-4199. Cited 17 times. http://journals.tubitak.gov.tr/elektrik/issues/elk-17-25-5/elk-25-5-56-1612-176.pdf doi: 10.3906/elk-1612-176spa
dcterms.bibliographicCitationSulaiman, M., Ahmad, S., Iqbal, J., Khan, A., Khan, R. Optimal operation of the hybrid electricity generation system using multiverse optimization algorithm (Open Access) (2019) Computational Intelligence and Neuroscience, 2019, art. no. 6192980. Cited 22 times. http://www.hindawi.com/journals/cin doi: 10.1155/2019/6192980spa
dcterms.bibliographicCitationMontoya, O.D., Garrido, V.M., Gil-Gonzalez, W., Grisales-Norena, L.F. Power Flow Analysis in DC Grids: Two Alternative Numerical Methods (2019) IEEE Transactions on Circuits and Systems II: Express Briefs, 66 (11), art. no. 8606244, pp. 1865-1869. Cited 59 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2891640spa
dcterms.bibliographicCitationLinde, A., Linde, D., Mezhlumian, A. From the big bang theory to the theory of a stationary universe (1994) Physical Review D, 49 (4), pp. 1783-1826. Cited 435 times. doi: 10.1103/PhysRevD.49.1783spa
dcterms.bibliographicCitationSchaefer, H.F. (1996) The Big Bang, Stephen Hawking, and God Lincoln Christian College and Seminary: Sídney, Australiaspa
dcterms.bibliographicCitationSingh, S. (2005) The Origin of the Universe. Cited 3 times. Harper Perennial: Meghalaya, Indiaspa
dcterms.bibliographicCitationKhoury, J., Ovrut, B.A., Steinhardt, P.J., Turok, N. Ekpyrotic universe: Colliding branes and the origin of the hot big bang (2001) Physical Review D, 64 (12), art. no. 123522. Cited 1193 times. https://journals.aps.org/prd/issuesspa
dcterms.bibliographicCitationWallace, D. The Emergent Multiverse: Quantum Theory According to the Everett Interpretation (Open Access) (2012) The Emergent Multiverse: Quantum Theory According to the Everett Interpretation, 9780199546961, pp. 1-560. Cited 363 times. http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780199546961.001.0001/acprof-9780199546961 ISBN: 978-019174141-8; 978-019954696-1 doi: 10.1093/acprof:oso/9780199546961.001.0001spa
dcterms.bibliographicCitationCarr, B., Ellis, G. Universe or multiverse? (Open Access) (2008) Astronomy and Geophysics, 49 (2), pp. 2.29-2.33. Cited 32 times. http://astrogeo.oxfordjournals.org/ doi: 10.1111/j.1468-4004.2008.49229.xspa
dcterms.bibliographicCitationEllis, G.F. Does the multiverse really exist? (2011) Sci. Am, 305, pp. 38-43. Cited 33 times.spa
dcterms.bibliographicCitationWeinberg, S. (2005) Living in the multiverse. Cited 83 times. arXiv arXiv:hep-th/0511037spa
dcterms.bibliographicCitationBoesgaard, A.M., Steigman, G. Big Bang nucleosynthesis: Theories and observations (1985) Annu. Rev. Astron. Astrophys, 23, pp. 319-378. Cited 396 times.spa
dcterms.bibliographicCitationRothstein, B. (2009) Anti-Corruption: A Big-Bang Theory. Cited 23 times. QoG Working Paper; University of Gothenburg: Gothenburg, Swedenspa
dcterms.bibliographicCitationBarrau, A., Martineau, K., Moulin, F. A status report on the phenomenology of black holes in loop quantum gravity: Evaporation, tunneling to white holes, dark matter and gravitational waves (Open Access) (2018) Universe, 4 (10), art. no. 102. Cited 32 times. https://www.mdpi.com/2218-1997/4/10/102/pdf doi: 10.3390/universe4100102spa
dcterms.bibliographicCitationWald, R.M., Ramaswamy, S. Particle production by white holes (1980) Physical Review D, 21 (10), pp. 2736-2741. Cited 20 times. doi: 10.1103/PhysRevD.21.2736spa
dcterms.bibliographicCitationBekenstein, J.D. Black holes and information theory (2004) Contemporary Physics, 45 (1), pp. 31-43. Cited 73 times. doi: 10.1080/00107510310001632523spa
dcterms.bibliographicCitationKrylov, V. Acoustic black holes: Recent developments in the theory and applications (2014) IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 61 (8), art. no. 6863850, pp. 1296-1306. Cited 93 times. doi: 10.1109/TUFFC.2014.3036spa
dcterms.bibliographicCitationChandrasekhar, S., Chandrasekhar, S. (1998) The Mathematical THEORY of black Holes, 69. Cited 3528 times. Oxford University Press: Oxford, UKspa
dcterms.bibliographicCitationYoum, D. Black holes and solitons in string theory (1999) Physics Report, 316 (1-3), pp. 1-232. Cited 152 times. http://www.elsevier.com/locate/physrep doi: 10.1016/S0370-1573(99)00037-Xspa
dcterms.bibliographicCitationPage, D.N., Hawking, S.W. Gamma rays from primordial black holes (1976) Astrophys. J, 206, pp. 1-7. Cited 256 times.spa
dcterms.bibliographicCitationKanti, P., Kleihaus, B., Kunz, J. Wormholes in dilatonic Einstein-Gauss-Bonnet theory (Open Access) (2011) Physical Review Letters, 107 (27), art. no. 271101. Cited 197 times. http://oai.aps.org/filefetch?identifier=10.1103/PhysRevLett.107.271101&component=fulltext&description=markup&format=xml doi: 10.1103/PhysRevLett.107.271101spa
dcterms.bibliographicCitationSafonova, M., Torres, D.F., Romero, G.E. Microlensing by natural wormholes: Theory and simulations (Open Access) (2002) Physical Review D, 65 (2), art. no. 023001. Cited 101 times. https://journals.aps.org/prd/issues doi: 10.1103/PhysRevD.65.023001spa
dcterms.bibliographicCitationArkani-Hamed, N., Orgera, J., Polchinski, J. Euclidean wormholes in string theory (2007) Journal of High Energy Physics, 2007 (12), art. no. 018. Cited 88 times. doi: 10.1088/1126-6708/2007/12/018spa
dcterms.bibliographicCitationAgnese, A.G., La Camera, M. Wormholes in the Brans-Dicke theory of gravitation (1995) Physical Review D, 51 (4), pp. 2011-2013. Cited 164 times. doi: 10.1103/PhysRevD.51.2011spa
dcterms.bibliographicCitationLipowski, A., Lipowska, D. Roulette-wheel selection via stochastic acceptance (Open Access) (2012) Physica A: Statistical Mechanics and its Applications, 391 (6), pp. 2193-2196. Cited 477 times. http://www.journals.elsevier.com/physica-a-statistical-mechanics-and-its-applications/ doi: 10.1016/j.physa.2011.12.004spa
dcterms.bibliographicCitationMontoya, O.D., Gil-González, W. On the numerical analysis based on successive approximations for power flow problems in AC distribution systems (Open Access) (2020) Electric Power Systems Research, 187, art. no. 106454. Cited 39 times. https://www.journals.elsevier.com/electric-power-systems-research doi: 10.1016/j.epsr.2020.106454spa
dcterms.bibliographicCitationKennedy, James, Eberhart, Russell Particle swarm optimization (Open Access) (1995) IEEE International Conference on Neural Networks - Conference Proceedings, 4, pp. 1942-1948. Cited 52422 times.spa
dcterms.bibliographicCitationAbualigah, L., Diabat, A. A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments (Open Access) (2021) Cluster Computing, 24 (1), pp. 205-223. Cited 146 times. https://link.springer.com/journal/volumesAndIssues/10586 doi: 10.1007/s10586-020-03075-5spa
dcterms.bibliographicCitationHatamlou, A. Black hole: A new heuristic optimization approach for data clustering (Open Access) (2013) Information Sciences, 222, pp. 175-184. Cited 901 times. doi: 10.1016/j.ins.2012.08.023spa
dcterms.bibliographicCitationChelouah, R., Siarry, P. Continuous genetic algorithm designed for the global optimization of multimodal functions (Open Access) (2000) Journal of Heuristics, 6 (2), pp. 191-213. Cited 250 times. doi: 10.1023/A:1009626110229spa
dcterms.bibliographicCitationMontoya, O.D., Garrid, V.M., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A. Optimal Sizing of DGs in AC Distribution Networks via Black Hole Optimization (2018) 2018 IEEE 9th Power, Instrumentation and Measurement Meeting, EPIM 2018, art. no. 8756354. Cited 2 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8753126 ISBN: 978-153867842-8 doi: 10.1109/EPIM.2018.8756354spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doihttps://doi.org/10.3390/electronics11081287
dc.subject.keywordsOptimal Power Flow;spa
dc.subject.keywordsReactive Power;spa
dc.subject.keywordsParticle Swarm Optimizationspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.