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Abstract: In this paper, we solve the optimal power flow problem in alternating current networks
to reduce power losses. For that purpose, we propose a master–slave methodology that combines
the multiverse optimization algorithm (master stage) and the power flow method for alternating
current networks based on successive approximation (slave stage). The master stage determines
the level of active power to be injected by each distributed generator in the network, and the slave
stage evaluates the impact of the proposed solution on each distributed generator in terms of the
objective function and the constraints. For the simulations, we used the 10-, 33-, and 69-node radial
test systems and the 10-node mesh test system with three levels of distributed generation penetration:
20%, 40%, and 60% of the power provided by the slack generator in a scenario without DGs. In order
to validate the robustness and convergence of the proposed optimization algorithm, we compared it
with four other optimization methods that have been reported in the specialized literature to solve
the problem addressed here: Particle Swarm Optimization, the Continuous Genetic Algorithm, the
Black Hole Optimization algorithm, and the Ant Lion Optimization algorithm. The results obtained
demonstrate that the proposed master–slave methodology can find the best solution (in terms of
power loss reduction, repeatability, and technical conditions) for networks of any size while offering
excellent performance in terms of computation time.

Keywords: optimal power flow; master–slave methodology; metaheuristic optimization algorithms;
alternating current networks; power loss reduction

1. Introduction

To understand the importance of this study, it is necessary to analyze the general
context of distributed generation and its current importance for electrical networks, as
well as the optimal power flow problem in AC grids. This section reviews the main
contributions of other authors, presents the contributions of this study, and outlines the
structure of this paper.

1.1. General Context

Electrical energy has become the backbone of society as we know it today because,
when used properly and wisely, it contributes to improving the quality of life of people
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all around the world [1–3]. However, the comfort provided by electrical energy has also
led to an increase in its consumption. As a result, power stations have been forced to
meet the demand by producing electricity from fossil fuels and renewable energy sources
and to implement large-scale electric power systems, which experience significant power
losses and unfavorable operating conditions, such as voltage drops and current limit
violations [4–7]. Thus, the ways in which electrical energy is generated and distributed
should be expanded while keeping in mind critical aspects, e.g., reduction of greenhouse
gas emissions, minimization of power losses associated with energy transport and distri-
bution, and the provision of a reliable and high-quality service to end users. To satisfy
these needs, both researchers and network operators have studied and proposed differ-
ent power generation and distribution technologies and promoted the development and
implementation of distributed energy resources such as distributed generators, batteries,
and static reactive compensators [8–10]. In particular, Distributed Generators (GDs) are the
distributed energy resource most widely studied and installed around the world; therefore,
they are the focus of this paper.

DGs can be integrated into both Alternating (AC) and Direct Current (DC) networks.
Nevertheless, the integration of these devices into AC networks has been more widely
studied and applied because AC grids are more common around the world than their DC
counterparts [10,11]. An adequate operation of DGs in an electrical system could improve
its chargeability, reduce the power losses, and enhance the voltage profiles of the grid,
among other aspects [12,13]. Considering these advantages and the widespread use of AC
power distribution systems, this study focuses on optimal power flow applied to DGs in
AC networks.

To ensure the correct operation of DGs in AC networks, first, we should identify the
main components of these networks, which include the slack generator, distributed genera-
tors, energy distribution branches, and electrical loads [10]. Second, we need to establish
the location of the DGs in the network and their technical constraints: number of generators
and nodes, minimum and maximum distributed power levels, branch data, and voltage
and current bounds, among others. Finally, we should devise operating strategies to control
the power injected by the distributed energy resources into the network to obtain as many
economic, technical-operating, and environmental benefits as possible [14]. This problem
is referred to as the Optimal Power Flow (OPF) problem in the specialized literature. The
OPF is a nonlinear nonconvex problem that must be solved using optimization techniques
and numerical methods to find the power configuration of DGs that contributes to the
improvement of technical, economical, and environmental indicators [15]. To solve this
problem, a master–slave methodology is usually implemented. In this kind of methodology,
the master stage is responsible for determining the power to be injected by each distributed
energy resource in order to satisfy the objective function defined by the network operator.
The slave stage is in charge of solving the load flow problem in order to establish the impact
of each solution proposed in the master stage [16]. Multiple authors in the specialized
literature have proposed different optimization techniques for the master and slave stages
in order to improve the impact of DGs in an electrical grid, as can be observed in the
following subsection.

1.2. State of the Art

In recent years, several authors interested in the energy sector have looked for and
proposed solutions to the various problems that occur in AC networks, including power
losses associated with energy distribution [17,18], optimal sizing and location of DGs in
the network [19,20], proper energy storage using batteries [15], and reduction of CO2
emissions [7]. Regarding the optimal power flow in AC networks that include DGs,
different solution methodologies have been proposed in the literature. Some of them have
used commercial software and solutions based on sequential programming implementing
open-source software. These two types of solution methodologies help to find the optimal
power levels to be injected by the DGs in a network.
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Studies such as [21,22] employed commercial optimization software to solve the OPF
problem, satisfying the limits and constraints associated with this problem. In [21], the
authors proposed a discrete-continuous solution methodology, in which the Chu–Beasley
genetic algorithm was implemented in the DigSILENT programming language. In that
study, the tests were only conducted in 6-, 14-, and 39-node test systems, thus ignoring the
performance of the proposed methodology in larger systems. Additionally, although the
computation times and the voltage profiles were taken into account, the currents flowing
through the lines and the standard deviation of the implemented methodology were not
considered. As a result, the maximum current levels of the branches that compose the
electrical system cannot be evaluated, which allows the method to propose infeasible
solutions to the problem under analysis and eliminates the possibility of evaluating the
repeatability of the solution each time the algorithm is executed. In [22], the authors pre-
sented a multi-objective optimization methodology based on the mixed-integer nonlinear
programming model. The problem was modeled in GAMS language and later solved using
the DICOPT solver. In that study, the OPF problem was tested in 14- and 30-node systems,
thus ignoring its behavior in larger networks. However, it took into account computation
times that the study (the same as the previous one) did not consider, the standard deviation
of the solution methodologies, the currents flowing through the lines, or the nodal voltages.

Studies such as [23–25] employed algorithms based on sequential programming to
solve the OPF problem in AC networks, thus avoiding the need for commercial software,
which is costly and complex [12]. In [23], the authors proposed a biogeography-based
optimization algorithm and used, as the objective function, the minimization of Ploss in the
IEEE 30- and 57-node test systems. In that study, both the computation times and the nodal
voltages were taken into account; however, the standard deviation was not considered to
evaluate the repeatability of the solution provided by the proposed methodology. In [24],
an artificial bee colony optimization algorithm was employed, the objective function was
the minimization of active power losses in AC networks, and the solution was tested in
the IEEE 30- and 118-node systems. In the study mentioned, the authors considered the
analysis of the nodal voltage constraints but not the computation times or the standard
deviation of the techniques they used. In [25], a particle swarm optimization algorithm
was proposed to solve the OPF problem in AC networks and tested using the IEEE 57- and
118-node systems. That study took into account the nodal voltages but not the computation
times or the standard deviation of the implemented algorithms. Importantly, none of these
studies considered the currents flowing through the lines, which does not ensure that the
solution obtained with the implemented methodologies satisfies the technical-operating
constraints of the test systems used in each paper. In [26], the authors proposed an efficient
analytical (EA) method for solving the OPF in an electrical distribution system in order
to minimize power losses. Their optimization method was tested in the 33- and 69-node
systems, obtaining excellent results. They used multiple methods to make comparisons,
but they did not consider the analysis of the processing times or the repeatability of the
solutions obtained by the EA. In [27], the authors presented a methodology implementing
the Biogeography-Based Optimization (BBO) method to solve the OPF problem in a power
transmission system; their objective function was the reduction of power losses. All their
simulations were carried out in Matlab using the 114-node test system. However, in that
paper, they did not compare the their results with those reported in other studies in the
literature. The authors of [28] proposed a master–slave methodology that combines the
black hole (BH) optimization algorithm and the triangular-based power flow method to
solve the OPF problem in an AC network; their objective function was the reduction of
power losses. The numerical results they obtained in the 33- and the 69-node test systems
demonstrated the effectiveness and robustness of the proposed approach compared to
those of others in the literature. However, they did not analyze the repeatability of the
algorithm or the processing times it required; furthermore, they neglected the current limits
of the branches in their mathematical model. In [29], the authors used a particle swarm
optimization algorithm to solve the optimal power flow problem by sizing a photovoltaic
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DG, wind DG, and a battery inside an electrical network. Their objective function was the
reduction of the investment and management costs of these devices using a mono-nodal
electrical network as the test system. Nevertheless, they did not compare their method to
others and did not analyze the processing time it required or its repeatability. In [30], the
authors addressed the OPF problem in radial distribution networks using a metaheuristic
optimization technique known as the sine–cosine algorithm; their objective function was
the reduction of power losses. They validated the effectiveness of the proposed solution
in the 33- and 69-node test systems by comparing its results with those reported in other
papers in the literature. Nevertheless, they did not consider the effects of the solution
methods under analysis on processing times. Furthermore, they did not include the current
limits of the branches in the constraints that compose the mathematical model.

It is important to highlight that none of the optimization algorithms employed in the
studies above were tuned, making it impossible to guarantee the same conditions for the
proposed solution techniques. Furthermore, all these methodologies proposed to solve the
OPF were evaluated in AC networks with radial topologies, without analyzing their effect
in mesh topologies, which are very common in conventional electrical systems.

After reviewing the state of the art, we identified the need for a new methodology
based on sequential programming to solve the OPF problem in AC networks that also
avoids the use of commercial software and can be replicated using open-source software.
The methodology should consider different topologies and sizes of AC networks to obtain
high quality solutions in short processing times. It should also analyze the operating
constraints of AC network components that were not considered in the state of the art
reviewed above, such as nodal voltage, current flowing through the transmission lines
in the systems, and power generated by the DGs. To evaluate the repeatability of the
solution method, the results should be assessed using a statistical approach that analyzes
the standard deviation of each methodology. In order to satisfy this need, this article
presents a master–slave methodology to solve the OPF problem that can be replicated
using open-source software. The master stage uses the Multiverse Optimization (MVO)
algorithm proposed by [31]. It was selected due to its high performance in solving research
problems and the fact that it has been applied to issues associated with renewable energies,
power generation, and distribution systems [32–35]. The slave stage uses the Successive
Approximation (SA) method proposed in [36] because of its high performance in terms of
convergence and processing time to solve the load flow problem, as reported by the authors.
To validate this methodology, the 10-, 33-, and 69-node radial systems and a 10-node mesh
system were used in this study. Each test system considers a maximum power injection
allowed for the DGs of 20%, 40%, and 60% of the power provided by the slack generator in
a scenario without distributed generation. Each scenario was tested 100 times to determine
the repeatability of the proposed solution methodology.

1.3. Scope and Main Contributions

Considering the importance of minimizing power losses associated with energy trans-
port in AC networks, as well as the need to develop new methodologies that help to find
reliable and good quality solutions without using commercial software, this study pro-
poses a master–slave methodology to solve the OPF problem in radial and mesh electrical
topologies. In the master stage, the proposed methodology uses the MVO [31] to determine
the power to be injected by each DG located in the network. In the slave stage, it applies
the SA numerical method [36] to evaluate both the impact of the solution provided by the
master stage and the set of constraints that compose the problem using the load flow. The
following are the main contributions of this study to the state of the art:

• A new solution methodology based on sequential programming to solve the OPF
problem in AC networks that considers radial and mesh topologies.

• A robust statistical method that can be used to identify the solution methodology with
the best balance of solution quality, processing times, and repeatability.
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• An optimization method selected because it yields the best results in terms of solution
quality, repeatability, and processing time to solve the OPF problem in AC networks
with radial and mesh topologies.

This study also makes the following contributions to the energy sector:

• A new methodology that can be used to determine the optimal power level to be
injected by each DG in order to reduce power losses and thus better use existing
energy resources.

• A methodology with short processing times to solve the problem of sizing DGs in
electrical networks.

1.4. Structure of the Paper

This article is organized as follows: Section 2 presents the mathematical formulation
of the OPF problem, as well as the constraints that compose it, where the objective function
is the reduction of power losses associated with energy distribution. Section 3 describes
the proposed solution methodology, which consists of a master stage that uses the MVO
and a slave stage that employs the SA numerical method. Section 4 presents and describes
the algorithms used here for comparison purposes. Section 5 details the radial and mesh
test scenarios employed in this study to perform the simulations. Section 6 reports and
analyzes the simulation results obtained by each optimization algorithm. Finally, Section 7
draws the conclusions and proposes future research directions.

2. Mathematical Formulation

A variety of objective functions can be used in AC networks: the minimization of the
operating costs of the network, the optimal selection of power conductors in distribution
networks, the reduction of CO2 emissions, the minimization of power losses in the network,
the optimal sizing and location of the DGs, and the improvement of voltage profiles. The
selection of the objective function depends on the needs of the network operator. Due
to its widespread use to evaluate the efficiency of the methodologies proposed to solve
the OPF problem in AC networks [21–25], the objective function selected in this study is
the minimization of the active power losses associated with energy distribution in AC
networks [25].

2.1. Objective Function

The objective function is the variable to be optimized while respecting the constraints
associated with the problem. The objective function selected for this study is represented
by Equation (1) below:

minPloss = Real{vTYLv} (1)

In this equation, Ploss denotes the active power losses (i.e., the variable to be minimized
in this study); v, a vector containing the complex voltages of the system calculated based
on the load flow; YL, the admittance matrix associated with the distribution lines; and vT , a
transposed vector of v.

2.2. Set of Constraints

The set of constraints refers to the technical-operating limits of the equipment that
composes the AC network. These limits, which are detailed below, are directly linked to
the objective function selected in this study:

SCG + SDG − SD = D(v)[YL + YN ]v (2)

Smin
DG ≤ SDG ≤ Smax

DG (3)

vmin ≤ v ≤ vmax (4)

IB < Imax
B (5)
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1TSDG ≤ α1T Real{SD} (6)

Equations (2)–(6) represent the OPF problem. Equation (2) expresses the total (active
and reactive) power balance in the network, where SCG is the complex power provided by
the slack generator; SDG, the complex power supplied by the DGs; SD, the complex power
demand; D(v), a symmetrical matrix that contains the complex voltages of the system in
its diagonal; and YL, a matrix of admittances associated with the nodal effects. Equation (3)
presents the apparent power limits allowed for the DGs, where Smin

DG and Smax
DG are the

minimum and maximum power that each DG can supply to the network, respectively.
Importantly, the DGs only inject active power into the network. Equation (4) defines the
nodal voltage limits of the system, where vmin and vmax are the minimum and maximum
voltages allowed in each node of the system. Equation (5) represents the maximum current
allowed inside the power distribution lines, where IB denotes the current flowing through
the transmission lines; and Imax

B , the maximum current that can pass through the conductor.
Equation (6) defines the maximum penetration percentage allowed for the DGs in the
network, where 1T is a row vector filled with ones; and α, the penetration percentage
allowed for each DG, which can be 20%, 40%, or 60% of the power provided by the slack
generator. Finally, in this equation, Real{X} corresponds to the real part of the complex
vector (X) associated with the injection of active power by the DGs:

min z =



Ploss + β11Tmax{0, v− vmax}
+β21Tmin{0, v− vmin}

+β31Tmin{0, SCG − Smin
CG }

+β41Tmax{0, SDG − Smax
DG }

+β51Tmin{0, SDG − Smin
DG}

+β6max{0, 1TSDG − α1T Real{SD}}

 (7)

In addition to the equations that represent the set of constraints, we also present
Equation (7), which guarantees that the constraints (Equations (2)–(6)) are respected at all
times. This equation penalizes the algorithm if the limits presented above are violated.
In this equation, β1 to β6 are the penalty factors, which, for this study, were heuristically
calculated and are equal to 1000. When all the constraints are respected, all the penalty values
are canceled out using the min{.} and max{.} functions, which causes z to be equal to Ploss.

To facilitate the comprehension of this article, Table 1 presents the notation and
nomenclature used for each variable in Equations (1)–(7), as well as the acronyms of the
OPF problem.

Table 1. Nomenclature.

Variable Meaning

OPF Optimal Power Flow

MVO Multiverse Optimizer

SA Successive Approximations

AC Alternating Current

DC Direct Current

DGs Distributed Generators

DG Distributed Generator

Ploss Power losses

v Vector containing all the nodal voltages of the system calculated based
on the load flow

GL Conductance matrix of the energy distribution lines

vT Transposed vector of v
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Table 1. Cont.

Variable Meaning

Sg Power generated by the slack node

SDG Power supplied by the DGs installed in the system

Sd Power demanded by the nodes in the system

D(v) Symmetric positive matrix containing the nodal voltages of the system
in its diagonal

GL Conductance of each transmission line

GN Resistive loads connected to the DC network

Smin
DG Minimum power allowed for the DGs

Smax
DG Maximum power allowed for the DGs

vmin Minimum voltage allowed in each node of the system

vmax Maximum voltage allowed in each node of the system

Iij Current that passes through the line that connects nodes i and j

Imax
ij Current limit established by the conductor assigned to this line

1T Transposed vector composed of ones, which can be used to add up
different penalties in the objective function

α
Maximum power injection level allowed for each DG,
which can be 20%, 40%, or 60% of the power supplied by the
slack generator

3. Proposed Solution Methodology

The equations presented in the previous section represent the OPF problem taking
into account the operation of the DGs located in the AC network. Since this is a nonlin-
ear nonconvex problem, it must be solved using optimization techniques and numerical
methods. This study, therefore, proposes dividing the OPF problem into two stages: master
and slave. In the first stage (master), the MVO [31] is used to determine the active power
to be injected by each DG installed in the network. In the second stage (slave), the SA
numerical method [36] is employed to solve the power flow problem and calculate the
electrical variables provided by the master stage in order to determine their impact on the
objective function we selected. The master–slave (MVO–SA) methodology proposed in this
paper is described in the next subsections.

3.1. Master Stage: Multiverse Optimizer (MVO)

Although there are various theories about the origin of the universe, the Big Bang
theory is one of the most well-known [37,38]. According to it, the Big Bang was an explosion
that created the known universe [39,40]. Physicists have also proposed several theories
suggesting the existence of universes other than the one we live in. One of them is known
as the Multiverse theory, which claims that there are other universes and that each began
as a result of an explosion (or Big Bang) [41–44]. The MVO is inspired by this theory,
and it employs three of its main concepts: white holes, black holes, and wormholes [31].
Physicists regard the Big Bang as a white hole and the main component for the start of a
new universe. White holes create and expel matter and energy [45–48]. Black holes, whose
behavior is the complete opposite, absorb everything that comes near their event horizon,
and nothing can escape them due to their colossal gravitational force [49–53]. Finally,
wormholes connect two distant points in a universe, allowing objects to pass through them
and creating instantaneous travel paths in the vastness of the universe [54–57].

The MVO mathematically models the behavior of white holes, black holes, and worm-
holes, and its search process consists of two stages. The first stage is exploration, in which
white holes and black holes are used. In this stage, the algorithm explores the search space
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and suggests the most promising regions where the best local optima can be found. The
second stage is exploitation, in which wormholes are employed. In this stage, a search is
carried out in the regions where the best local optima have been found in order to find the
global optimum.

The following subsections present the steps followed in this study for the computa-
tional development and to find a solution to the OPF problem using the MVO.

3.1.1. Generating the Initial Population

Equation (8) is used to generate the initial population of the universes, where each
universe constitutes a solution to the problem addressed here (i.e., the power level to be
injected by the DGs). In this equation, subscript i denotes the i-th universe, and subscript j
represents the j-th object in universe i. In the OPF problem, each row represents a possible
solution to the problem; and each column, the number of nodes (other than the slack node)
that are allowed to inject power. Each universe (Ui,j) created with Equation (8) is located
within the solution space, which is limited by the technical constraints of the OPF problem.
In this equation, ub and lb are the maximum and minimum power that each DG can inject,
respectively. In order for the algorithm to explore larger regions of the search space, the
initial population of Ui,j is generated randomly using the rand command, which produces
random values between 0 and 1 for each object j within universe i:

Ui,j = ((ub− lb) · rand) + lb (8)

To generate the entire population of universes, this study proposes a population
contained in a matrix of size nxd, where n is the number of universes, and d denotes the
number of variables in the problem addressed here (see Equation (9)). In Equation (9), Un is
the n-th universe in the MUniverses matrix (which, in the case of the OPF problem, represents
the possible solutions), and Ud denotes the number of DGs located in the network:

MUniverses =



U1
U2
...
...

Un

 =



U1,1 U1,2 · · · · · · U1,d
U2,1 U2,2 · · · · · · U2,d

...
...

...
...

...
...

...
...

...
...

Un,1 Un,2 · · · · · · Un,d

 (9)

3.1.2. Calculating the Objective Function

To assess the impact of every solution proposed in the MUniverses matrix, the objective
function of each Un is evaluated using the SA numerical method. This method evaluates
the power levels injected by the DGs, which makes it possible to determine the power
losses associated with each universe (Un). The obtained values are stored in a matrix of
size n× 1 called MOUniverses, which is presented in Equation (10):

MOUniverses =


f ([U1,2 U1,2 · · · · · · U1,d])
f ([U2,1 U2,2 · · · · · · U2,d])

...
...

...
...

...
f ([Un,1 Un,2 · · · · · · Un,d])

 (10)

Additionally, the MOUniverses matrix is sorted in ascending order, where the first
position represents the objective function with the best value, i.e., the lowest Ploss for the
system. This is selected as the incumbent solution to the OPF problem and stored in
Best_Fob (Equation (11)). The variables that compose the best objective function are also
stored in Best_U (Equation (12)), and this universe is selected as the one with the best
solution found at the current iteration:

Best_Fob = [ f (U1,d)] (11)
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Best_U = [Ud] (12)

3.1.3. Movement Strategy

The MVO technique is divided into two stages: exploration and exploitation. In the
exploration stage, this technique uses black and white holes to explore the search space,
and the algorithm tries to discover the most promising regions where the global optimum
can be potentially found. In the exploitation stage, this technique uses wormholes to exploit
the promising regions found in the exploration stage, and the algorithm converges toward
the global optimum (moves forward toward the best solution). In the MVO method, each
solution is assigned an inflation rate (IRi) that corresponds to the best Ploss obtained so far
by each universe. Such inflation rate is proportional to the fitness function provided by the
slave stage after evaluating the objects j proposed by each one of the universes (i.e., the
power levels to be injected by the DGs). In addition, the following rules are applied to the
universes of the MVO:

• The higher the IR, the greater the probability of having a white hole.
• The lower the IR, the greater the probability of having a black hole.
• Universes with a high IR tend to send objects through white holes.
• Universes with a low IR tend to receive more objects through black holes.
• Any object in any universe can randomly move toward the best universe through

wormholes, regardless of the IR.

Furthermore, black or white holes must change their behavior depending on the
required solution approach (i.e., a maximization or minimization problem). In this case, it
is a minimization problem.

In the MVO method, objects (search particles) move between universes through
black/white holes, i.e., objects can be exchanged between universes. When a relationship
is established between white/black holes in two universes, the universe with the higher
IR is considered to have a white hole, whereas that with the lower IR is considered to
have black holes. Thus, information is transferred from the white holes in the source
universe to the black holes in the target universe. Moreover, regardless of their IR, all
universes are assumed to have wormholes in order to randomly transport objects. Worm-
hole existence probability (WEP) and travel distance rate (TDR), which are denoted by
Equations (13) and (14), respectively, are two fundamental coefficients for the optimal oper-
ation of the MVO. Equation (13) defines WEP as the probability of existence of wormholes
in the universes, which increases linearly over iterations to emphasize exploitation as
progress made in the optimization process:

WEP = Min + l ·
(

Max−Min
L

)
(13)

This equation is able to generate a rate of change based on the sum of a minimum
value (Min) and a maximum value (Max), both of which depend on the algorithm and the
iterative process. In this equation, l is the current iteration, and L denotes the maximum
number of iterations. This allows for changes at the exploration and exploitation levels
of the optimization technique. Importantly, the Min and Max values were optimized to
improve the quality of the solution to the problem addressed here.

Additionally, in Equation (14), TDR defines the distance over which an object can be
transported through a wormhole around the best universe obtained thus far. Unlike WEP,
TDR increases over iterations to provide a more precise local exploitation/search around
the best universe found thus far:

TDR = 1−
(

l1/P

L1/P

)
(14)

In this equation, P denotes the level of precision of the exploitation of the algorithm,
i.e., the higher its value, the faster and more precise the search exploitation of the algorithm.
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In this study, parameter P was optimized to find the best solution to the OPF problem in
AC networks.

3.1.4. Evolution of the Universes in the Iterative Process

The relationship between white and black holes allows objects to be exchanged be-
tween universes through white/black tunnels. In addition, a universe can update the
value of an object based on the information of an object from another universe. Their
interaction occurs as a function of IR. Objects travel from a source white hole to a target
black hole. Black holes make objects in a universe disappear, and they are replaced with
others coming from white holes. Equation (15) shows how the normalized inflation rate
of the i-th universe is obtained, where the IR values calculated for each universe in the
population are normalized. When this equation is applied to the set of universes, the vector
of size n× 1 (where n is the number of solutions or universes) is obtained with normalized
values in the [0–1] range:

NI(IRi) =

(
IRi

max(IRi)

)
(15)

The white/black tunnel is generated by means of Equation (16), where each object j in
universe i can be replaced with an object j from universe k, and the position of k is selected
using a roulette wheel that offers the option of arbitrarily selecting any universe in the
solution space. The exchange of objects between universes occurs for the same element, and this
is achieved by comparing a random number r1 with the normalized inflation rate (NI(IRi)).

Ui,j =

{
Uk,j r1 < NI(IRi)

Ui,j r1 ≥ NI(IRi)
∀i = 1, 2, · · · , n; ∀j = 1, 2, · · · , d (16)

In the equation above, Uk,j is the object j of universe k selected by the roulette wheel
and transported through the white/black tunnel to universe i. An object is transferred
to universe i if and only if the random value r1 in the [0–1] range is below the NI(IRi).
Otherwise, there is no exchange of objects through white/black tunnels, i.e., the object of
universe Ui,j will not be updated and will keep its current value. Equation (17) is used
to determine the k-th universe to which object j will be transported. In this equation, k is
chosen using the roulette wheel function [58], which selects a random integer in the [1–n]
range, where n is the number of solutions proposed for the problem. Algorithm 1 presents
the pseudocode to select universe k by means of Equation (17):

k = RouletteWheelSelection(−NI) (17)

Importantly, since this is a minimization problem, the selection using the roulette
wheel must be performed with −NI. If the problem to be solved is a maximization one,
−NI should be replaced with the positive NI.

Algorithm 1 Proposed pseudocode of the roulette wheel to select universe k to transport
element j to universe i.

1: function choice = RouletteWheelSelection(weights)
2: accumulation = cumsum(weights);
3: p = rand() ∗ accumulation(end);
4: chosen_index = −1;
5: for index = 1 : length(accumulation) do
6: if (accumulation(index) > p) then
7: chosen_index = index;
8: break
9: end if

10: chose = chosen_index;
11: end for
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3.1.5. Updating Universes Based on Wormholes

Wormholes allow for the instantaneous teleportation of objects j to the best universe
found thus far, where IR represents the evaluation of the objective function (in this case,
the minimization of power losses in the system). As the algorithm advances, each universe
experiences random teleportation of its objects to the best universe (Best_U(1, j)) through
wormholes. This process is repeated until a stopping criterion is met.

To guarantee changes in each universe, there must be a high probability of improve-
ment of the IR through wormholes, assuming that the latter are always established between
new universes randomly generated depending on parameter r4 and the best universe
(BestU(1, j)), which are represented in Equation (18):

Ui,j =




[

Best_U(1,j) + TDR · ((ub− lb) · r4 + lb)
]

r3 < 0.5 (a)[
Best_U(1,j) − TDR · ((ub− lb) · r4 + lb)

]
r3 ≥ 0.5 (b)

r2 < WEP

Ui,j r2 ≥WEP
∀i = 1, 2, · · · , n; ∀j = 1, 2, · · · , d

(18)

This equation can be used to generate new objects j for universe i (Ui,j) at each iteration,
which depends on WEP and random parameter r2 in the [0–1] range. If r2 < WEP, a
new element j will be generated for universe i depending on the value that parameter r3
takes, which is a random number in the [0–1] range. As selection criteria, we have that,
if r3 < 0.5, Equation (18) (a) will be used, but, if r3 ≥ 0.5, Equation (18) (b) will be
employed. However, if r2 ≥ WEP, a new object j will not be generated in universe i;
instead, the current value of object j will be kept until r2 < WEP.

3.1.6. Stopping Criteria

The following two stopping criteria are employed for the master stage:

• Maximum number of iterations: The iterative process will finish when the algorithm
reaches the maximum number of iterations (L), which are controlled by counter l.

• Number of non-improvement iterations: The algorithm will stop when the incumbent
solution is not updated after n consecutive iterations.

3.2. Slave Stage

The slave stage allows us to determine the impact of each solution proposed in the
master stage by evaluating the objective function associated with each solution (Un,d). In
other words, the slave stage assesses the electrical variables provided by the master stage,
which are used to estimate the Ploss in the system. Hence, a numerical method is necessary
to solve the load flow problem in an iterative manner and ensure that the constraints of
the problem are respected. Considering that, this paper proposes implementing the SA
numerical method presented in [59], which was chosen due to its excellent performance in
solving the power flow problem and because it is able to solve the load flow problem for
radial as well as mesh networks. This method is based on Equation (19):

Ydd · vd = −D−1
d (v∗d)S

∗
d −Ydg · vg (19)

In this equation, Ydd and Ydg are the components of the nodal admittances matrix of
the network that relate load nodes to generator nodes, respectively. The variables vd and vg
represent the voltages in the demand and generator nodes, respectively. The nodal voltage
profiles in the demand nodes can be calculated by means of a mathematical development
applied to Equation (19):

vd = −Y−1
dd [D−1

d (v∗d)S
∗
d −Ydg · vg] (20)

In order to estimate the nodal voltages (vd) of the system with an almost-null conver-
gence error, an iterative process must be implemented. For this purpose, a counter (t) is
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included in Equation (20). As a result, the following equation can be used to calculate the
nodal voltages of the system:

vt+1
d = −Y−1

dd [D−1
d ((v∗d)

t)S∗d −Ydg · vg] (21)

Figure 1 shows a flowchart that describes the iterative process of the master–slave
(MVO–SA) methodology used here to solve the OPF problem.

START

Read the data of the electrical systems and the MVO algorithm.

Generate initial universe population.

Size the DGs fixed for each individual that
composes the population by evaluating their
objective function and technical constraints.

Select the universe with the best
objective function as incumbent.

Generate a new universe population
individual (a new location solution).

Update the population and incumbent of the
problem if the solution provided by the new uni-
verse outperforms the solution contained in them.

Has the stopping criterion been met?

Yes

No

Print the incumbent as the solution to the prob-
lem of optimal location and sizing of DGs.

STOP

Master stage:MVO

Slave stage: SA

Figure 1. Proposed methodology based on the MVO and SA algorithms.
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4. Methods Used for Comparison Purposes

To evaluate the capacity of the MVO to converge toward the best solution in terms of
quality and computation times, it was compared with four other optimization techniques
that have been reported in the specialized literature to solve the OPF problem: the Particle
Swarm Optimization (PSO) algorithm, the Ant Lion Optimization (ALO) algorithm, the
Black Hole (BH) optimization algorithm, and a Continuous Genetic Algorithm (CGA). The
PSO algorithm is inspired by the behavior of schools of fish when exploring a region in
search of food [60]. The ALO mimics the hunting mechanism of ant lions, which dig a
cone-shaped hole in the ground to catch their prey [61]. The BH algorithm is based on the
dynamic interaction between stars and black holes [62]. Finally, the CGA is inspired by
the genetic crossover, selection, and mutation processes of living beings, through which
parents pass on their DNA to their offspring [63]. These four optimization algorithms
were selected because of their excellent performance in solving the OPF problem in AC
networks [19,21,30,64]. Each one of them was implemented here in the master stage of the
master–slave methodology. Thus, the master stage employed one of these optimization
algorithms, and the slave stage always used the SA numerical method to solve the load
flow problem [36].

In this study, we used the 10-, 33-, and 69-node radial test systems and the 10-node
mesh test system (which are described in Section 5) to solve the OPF problem and assess
the effectiveness of the proposed methodology in these types of electrical systems.

To ensure a fair comparison of all the optimization algorithms we employed, each
one of them was tuned to guarantee the same conditions and that they could find the best
solution to the problem addressed in this paper. To carry out such tuning, we used the
PSO algorithm [60] with an initial population of 10 individuals and a maximum number
of iterations of 300. The tuning parameters were a population size in the [1–100] range, a
maximum number of iterations for each algorithm in the [1–1000] range, and a number of
non-improvement iterations in the [1–1000] range. Moreover, for the MVO, parameters
P, Max, and Min were tuned using [1–10], [0.001–1], and [0.001–1] ranges, respectively.
Table 2 presents the turned parameters that allow each optimization algorithm to find the
best solution to the OPF problem.

Table 2. Parameters of the continuous methods employed here in the master stage.

Method MVO PSO ALO BH CGA

Number of particles 80 58 62 83 57
Maximum iterations 432 723 992 667 551

Non-improvement iterations 300 252 725 340 551
P parameter 6 - - - -

Max parameter 0.81 - - - -
Min parameter 0.09 - - - -

Importantly, the parameters reported in Table 2 can be used to replicate each optimiza-
tion technique in networks of any size.

5. Test Scenarios and Considerations

To evaluate the robustness and quality of the solution provided by each method, we
used the 10-, 33-, and 69-node radial test systems, but we also employed a 10-node mesh
test system to assess the effectiveness of the proposed methodology in mesh topologies.
These four test systems were selected in order to assess the ability of each optimization
algorithm to find the best solution in networks of different sizes. In each test system, DGs
were allowed to inject 20%, 40%, and 60% of the power provided by the slack generator. In
addition, each system features a single slack generator in a scenario without DGs (i.e., the
base case).
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5.1. Radial Test Systems

This subsection presents the radial test systems used in this paper.

5.1.1. 10-Node Radial Test System

Figure 2 illustrates the 10-node system, which consists of 9 lines and 10 nodes. In a
scenario without distributed generation, the slack generator produces 12,591.4181 kW, and
the active power losses amount to 223.4181 kW. In this system, the DGs were located at
nodes 5, 9, and 10, considering three maximum penetration levels: 20%, 40%, and 60% of the
active power provided by the slack generator in the base case. For all the DGs, the minimum
injection power was 0 kW at each penetration level. Likewise, the maximum injection
powers for the 20%, 40%, and 60% penetration levels were 2518.2836 kW, 5036.5673 kW,
and 7554.8509 kW, respectively. The maximum current for this system (i.e., 581.2757 A) was
calculated using the load flow. Considering this value, we used a 1250-kcmil conductor
operating at 75 ◦C, which establishes a maximum line current of 590 A. Since this study
investigates a non-telescopic electrical network, this current limit applies to all the lines in
the system. For all the calculations related to this system, we employed a base power of
100 kVA and a base voltage of 23 kV.

Slack
AC

1 2 3

6

4

10

7

5

8

9

Figure 2. Electrical configuration of the 10-node radial test system.

Table 3 reports the electrical parameters of the 10-node system. The first two columns
specify the output and input nodes. The third column shows the resistance of the conduct-
ing lines. The fourth column details the reactances. Finally, the fifth and sixth columns
present the active and reactive powers, respectively, which correspond to the powers
demanded by each node in the system.

Table 3. Electrical parameters of the 10-node radial test system.

Node i Node j Rij [Ω] Xij [Ω] P [kW] Q [kVAr]

1 2 0.1233 0.4127 1840 460
2 3 0.2467 0.6051 980 340
2 4 0.7469 1.2050 1790 446
4 5 0.6984 0.6084 1598 1840
2 6 1.9837 1.7276 1610 600
6 7 0.9057 0.7886 780 110
7 8 2.0552 1.1640 1150 60
7 9 4.7953 2.7160 980 130
3 10 5.3434 3.0264 1640 200

5.1.2. 33-Node Radial Test System

Figure 3 presents the 33-node system, which consists of 33 nodes and 32 lines. The base
case of this system uses a base voltage of 12.66 kV and a base apparent power of 100 kVA.
In the base case, the slack generator injects an active power of 3925.9785 kW, and the active
power losses amount to 210.9785 kW. The locations of the DGs in this system were defined
as in [10], i.e., they were located at nodes 12, 15, and 31. As in the previous system, DGs
are allowed to inject 20%, 40%, and 60% of the power supplied by the slack generator in
the base case. For all the DGs, the minimum active power was 0 kW, and the maximum
active powers were 785.1957 kW, 1570.3914 kW, and 2355.5871 kW for the 20%, 40%, and
60% penetration levels, respectively. When the base case was evaluated, the maximum line
current was 365.2518 A. Based on this value, we used a 700-kcmil conductor operating at
60 ◦C in each segment of the system, which establishes a maximum line current of 385 A.
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Figure 3. Electrical configuration of the 33-node radial test system.

Table 4, which is organized in the same way as Table 3, reports the electrical parameters
of the 33-node system.

Table 4. Electrical parameters of the 33-node radial test system.

Node i Node j Rij [Ω] Xij [Ω] P [kW] Q [kVAr] Node i Node j Rij [Ω] Xij [Ω] P [kW] Q [kVAr]

1 2 0.0922 0.0477 100 60 17 18 0.7320 0.5740 90 40
2 3 0.4930 0.2511 90 40 2 19 0.1640 0.1565 90 40
3 4 0.3660 0.1864 120 80 19 20 1.5042 1.3554 90 40
4 5 0.3811 0.1941 60 30 20 21 0.4095 0.4784 90 40
5 6 0.8190 0.7070 60 20 21 22 0.7089 0.9373 90 40
6 7 0.1872 0.6188 200 100 3 23 0.4512 0.3083 90 50
7 8 1.7114 1.2351 200 100 23 24 0.8980 0.7091 420 200
8 9 1.0300 0.7400 60 20 24 25 0.8900 0.7011 420 200
9 10 1.0400 0.7400 60 20 6 26 0.2030 0.1034 60 25

10 11 0.1966 0.0650 45 30 26 27 0.2842 0.1447 60 25
11 12 0.3744 0.1238 60 35 27 28 1.0590 0.9337 60 20
12 13 1.4680 1.1550 60 35 28 29 0.8042 0.7006 120 70
13 14 0.5416 0.7129 120 80 29 30 0.5075 0.2585 200 600
14 15 0.5910 0.5260 60 10 30 31 0.9744 0.9630 150 70
15 16 0.7463 0.5450 60 20 31 32 0.3105 0.3619 210 100
16 17 1.2890 1.7210 60 20 32 33 0.3410 0.5302 60 40

5.1.3. 69-Node Radial Test System

Figure 4 shows the 69-node system, which consists of 69 nodes and 68 lines. The
scenario without DGs in this system employs a base voltage of 12.66 kV and a base apparent
power of 100 kVA. In addition, the slack generator supplies an active power of 4132.8423 kW,
and the active power losses amount to 242.1523 kW. As in the other two systems, DGs are
allowed to inject 20%, 40%, and 60% of the power provided by the slack generator. The
location of the DGs in this system was defined as in [10], i.e., they were located at nodes
26, 61, and 66. For all the DGs, the minimum active power was 0 kW, and the maximum
active powers were 826.5685 kW, 1653.1369 kW, and 2479.7054 kW for the 20%, 40%, and
60% penetration levels, respectively. When the load flow was simulated for this system,
the maximum current was 394.4489 A. Therefore, a 750-kcmil conductor operating at 60 ◦C
was used in each segment of the system, with a maximum current of 400 A.

Slack
AC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

51

52

28 29 30 31 32 33 34 35

Figure 4. Electrical configuration of the 69-node radial test system.

Table 5, which is organized in the same way as Tables 3 and 4, presents the parameters
of the 69-node system.
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Table 5. Electrical parameters of the 69-node radial test system.

Node i Node j Rij [Ω] Xij [Ω] P [kW] Q [kVAr] Node i Node j Rij [Ω] Xij [Ω] P [kW] Q [kVAr]

1 2 0.0005 0.0012 0 0 3 36 0.0044 0.0108 26 18.55
2 3 0.0005 0.0012 0 0 36 37 0.0640 0.1565 26 18.55
3 4 0.0015 0.0036 0 0 37 38 0.1053 0.1230 0 0
4 5 0.0215 0.0294 0 0 38 39 0.0304 0.0355 24 17
5 6 0.3660 0.1864 2.6 2.2 39 40 0.0018 0.0021 24 17
6 7 0.3810 0.1941 40.4 30 40 41 0.7283 0.8509 102 1
7 8 0.0922 0.0470 75 54 41 42 0.3100 0.3623 0 0
8 9 0.0493 0.0251 30 22 42 43 0.0410 0.0478 6 4.3
9 10 0.8190 0.2707 28 19 43 44 0.0092 0.0116 0 0

10 11 0.1872 0.0619 145 104 44 45 0.1089 0.1373 39.22 26.3
11 12 0.7114 0.2351 145 104 45 46 0.0009 0.0012 39.22 26.3
12 13 1.0300 0.3400 8 5 4 47 0.0034 0.0084 0 0
13 14 1.0440 0.3400 8 5 47 48 0.0851 0.2083 79 56.4
14 15 1.0580 0.3496 0 0 48 49 0.2898 0.7091 384.7 274.5
15 16 0.1966 0.0650 45 30 49 50 0.0822 0.2011 384.7 274.5
16 17 0.3744 0.1238 60 35 8 51 0.0928 0.0473 40.5 28.3
17 18 0.0047 0.0016 60 35 51 52 0.3319 0.1140 3.6 2.7
18 19 0.3276 0.1083 0 0 9 53 0.1740 0.0886 4.35 3.5
19 20 0.2106 0.0690 1 0.6 53 54 0.2030 0.1034 26.4 19
20 21 0.3416 0.1129 114 81 54 55 0.2842 0.1447 24 17.2
21 22 0.0140 0.0046 5 3.5 55 56 0.2813 0.1433 0 0
22 23 0.1591 0.0526 0 0 56 57 1.5900 0.5337 0 0
23 24 0.3463 0.1145 28 20 57 58 0.7837 0.2630 0 0
24 25 0.7488 0.2475 0 0 58 59 0.3042 0.1006 100 72
25 26 0.3089 0.1021 14 10 59 60 0.3861 0.1172 0 0
26 27 0.1732 0.0572 14 10 60 61 0.5075 0.2585 1244 888
3 28 0.0044 0.0108 26 18.6 61 62 0.0974 0.0496 32 23

28 29 0.0640 0.1565 26 18.6 62 63 0.1450 0.0738 0 0
29 30 0.3978 0.1315 0 0 63 64 0.7105 0.3619 227 162
30 31 0.0702 0.0232 0 0 64 65 1.0410 0.5302 59 42
31 32 0.3510 0.1160 0 0 65 66 0.2012 0.0611 18 13
32 33 0.8390 0.2816 10 10 66 67 0.0047 0.0014 18 13
33 34 1.7080 0.5646 14 14 67 68 0.7394 0.2444 28 20
34 35 1.4740 0.4873 4 4 68 69 0.0047 0.0016 28 20

5.2. Mesh Test System

This subsection describes the mesh test system used in this study.

10-Node Mesh Test System

Figure 5 presents the topology of the 10-node mesh network. This 10-node system is
the same we used previously, but, in this case, it has 10 nodes and 11 lines. The same voltage
and apparent power of the 10-node radial test system are used in the base case. In the case
without distributed generation, the slack generator provides a power of 12,558.3237 kW,
and the active power losses equal 190.3237 kW. As in its radial counterpart, the DGs are
located at nodes 5, 9, and 10, and this feeder uses penetration percentages of 20%, 40%,
and 60% of the power produced by the slack generator. This way, each DG can produce
a minimum power of 0 kW and maximum powers of 2511.6647 kW, 5023.3295 kW, and
7534.9942 kW, respectively. The maximum voltage flowing through the lines is 579.7276 A.
Thus, a 1250-kcmil conductor at 75 ◦C was selected according to NTC 2050 standard, and a
maximum line power of 590 A was established for each section of the network. Using the
same order as in Tables 3–10 presents the electrical parameters of this system.



Electronics 2022, 11, 1287 17 of 33

Slack
AC

1 2 3

6

4

10

7

5

8

9

Figure 5. Electrical configuration of the 10-node mesh test system.

Table 6. Electrical parameters of the 10-node mesh system.

Node i Node j Rij [Ω] Xij [Ω] P [kW] Q [kVAr]

1 2 0.1233 0.4127 1840 460
2 3 0.2467 0.6051 980 340
2 4 0.7469 1.2050 1790 446
4 5 0.6984 0.6084 1598 1840
2 6 1.9837 1.7276 1610 600
6 7 0.9057 0.7886 780 110
7 8 2.0552 1.1640 1150 60
7 9 4.7953 2.7160 980 130
3 10 5.3434 3.0264 1640 200
5 10 0.1426 0.4522 - -
8 10 0.2018 0.5214 - -

Table 7. Results of the simulations in the 10-node radial test system.

10-Node Radial Test System

Method Node/
Power [kW]

Power Losses
Vworst [p.u]/

Node Imax [A]Minimum [kW]/
Reduction [%]

Average [kW]/
Reduction [%] Time [s] STD [%]

Without DGs — 223.4181 — — — 0.9–1.1 590

20% penetration

MVO

5/0.05

116.9220/47.6667 116.9250/47.6654 3.75 0.005 0.9723/8 433.33249/1589.82

10/928.41

PSO

5/0

116.9218/47.6668 117.2119/47.5370 4.50 1.328 0.9723/8 433.33219/1589.55

10/928.73

ALO

5/0.51

116.9473/47.6554 117.9188/47.2206 6.66 0.721 0.9723/8 433.38279/1586.68

10/929.96

BH

5/96.28

117.9244/47.2181 121.5254/45.6063 3.35 1.746 0.9729/8 433.59389/1696.06

10/720.92

CGA

5/18.86

117.0415/47.6132 117.4801/47.4169 3.29 0.173 0.9725/8 433.41029/1619.67

10/878.08

40% penetration

MVO

5/1619.69

80.7608/63.8522 80.7619/63.8517 3.68 0.001 0.9752/8 322.26949/1971.25

10/1445.62

PSO

5/1620.68

80.7608/63.8522 80.9785/63.7547 4.25 0.910 0.9751/8 322.26939/1970.20

10/1445.69
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Table 7. Cont.

10-Node Radial Test System

Method Node/
Power [kW]

Power Losses
Vworst [p.u]/

Node Imax [A]Minimum [kW]/
Reduction [%]

Average [kW]/
Reduction [%] Time [s] STD [%]

Without DGs — 223.4181 — — — 0.9–1.1 590

40% penetration

ALO

5/1570.43

80.7922/63.8381 81.8538/63.3629 6.61 1.797 0.9752/8 322.29369/1979.08

10/1486.52

BH

5/1606.93

80.9765/63.7556 82.4371/63.1019 3.29 1.084 0.9751/8 323.34919/1969.06

10/1435.96

CGA

5/1642.03

80.7807/63.8433 81.0075/63.7417 3.30 0.179 0.9751/8 322.34649/1959.77

10/1433.01

60% penetration

MVO

5/2992.61

72.1260/67.7170 72.1260/67.7170 3.88 9.38 × 10−7 0.9771/8 235.13829/2235.19

10/1804.14

PSO

5/2992.59

72.1260/67.7170 72.1260/67.7170 2.39 1.22 × 10−10 0.9771/8 235.14099/2235.17

10/1804.13

ALO

5/2993.04

72.1308/67.7149 72.7952/67.4175 6.70 1.613 0.9770/8 236.20869/2219.08

10/1795.22

BH

5/2941.39

72.1498/67.7064 73.1556/67.2562 3.78 1.129 0.9773/8 236.37679/2267.73

10/1794.37

CGA

5/3020.79

72.1345/67.7132 72.1848/67.6907 3.46 0.061 0.9772/8 234.34599/2245.92

10/1783.47

Table 8. Simulation results in the 33-node radial test system.

33-Node Radial Test System

Method Node/
Power [kW]

Power Losses
Vworst [p.u]/

Node Imax [A]Minimum [kW]/
Reduction [%]

Average [kW]/
Reduction [%] Time [s] STD [%]

Without DGs — 210.9785 — — — 0.9–1.1 380

20% penetration

MVO

12/44.88

127.4984/39.5680 127.4994/39.5676 11.18 0.001 0.9377/33 241.493115/398.94

31/341.37

PSO

12/45.68

127.4984/39.5681 127.8911/39.3819 11.97 0.524 0.9377/33 241.493115/398.71

31/340.81



Electronics 2022, 11, 1287 19 of 33

Table 8. Cont.

33-Node Radial Test System

Method Node/
Power [kW]

Power Losses
Vworst [p.u]/

Node Imax [A]Minimum [kW]/
Reduction [%]

Average [kW]/
Reduction [%] Time [s] STD [%]

Without DGs — 210.9785 — — — 0.9–1.1 380

20% penetration

ALO

12/55.13

127.5029/39.5659 127.6270/39.5071 17.44 0.091 0.9376/33 241.497015/391.34

31/338.68

BH

12/88.70

127.6257/39.5077 128.4504/39.1168 9.19 0.404 0.9358/18 241.514215/333.88

31/362.48

CGA

12/76.31

127.5192/39.5582 127.6041/39.5180 9.27 0.044 0.9376/33 241.499615/370.19

31/338.64

40% penetration

MVO

12/409.59

90.3771/57.1629 90.3777/57.1626 10.73 0.001 0.9594/33 176.539215/397.41

31/763.40

PSO

12/410.02

90.3771/57.1629 90.7890/56.9677 11.47 1.159 0.9594/33 176.539215/397.60

31/762.78

ALO

12/429.24

90.3861/57.1586 90.5850/57.0644 17.30 0.218 0.9591/33 176.542215/388.74

31/752.38

BH

12/348.19

90.5000/57.1047 91.7172/56.5277 9.04 0.777 0.9594/33 176.753615/455.18

31/764.43

CGA

12/432.88

90.4019/57.1511 90.4811/57.1136 9.48 0.053 0.9591/33 176.593315/384.37

31/752.48

60% penetration

MVO

12/596.31

85.7789/59.3423 85.7789/59.3423 10.68 6.11 × 10−7 0.9700/33 144.265615/397.76

31/980.31

PSO

12/596.32

85.7789/59.3423 85.7789/59.3423 6.63 8.00 × 10−6 0.9700/33 144.265715/397.74

31/980.32

ALO

12/604.99

85.7813/59.3412 86.0098/59.2329 18.03 0.347 0.9699/33 144.645315/388.35

31/976.24

BH

12/598.86

85.8045/59.3302 86.3709/59.0618 9.80 0.607 0.9694/33 146.365515/380.11

31/968.85

CGA

12/594.56

85.7803/59.3417 85.7999/59.3324 10.07 0.017 0.9699/33 144.777815/395.17

31/978.16
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Table 9. Simulation results in the 69-node radial test system.

69-Node Radial Test System

Method Node/
Power [kW]

Power Losses
Vworst [p.u]/

Node Imax [A]Minimum [kW]/
Reduction [%]

Average [kW]/
Reduction [%] Time [s] STD [%]

Without DGs — 242.1523 — — — 0.9–1.1 400

20% penetration

MVO

26/0.01

133.56324/44.8433 133.56871/44.8410 44.84 0.003 0.9385/69 252.581761/583.13

66/243.43

PSO

26/0

133.56262/44.8435 134.15470/44.5990 57.16 1.502 0.9385/69 252.581761/580.16

66/246.41

ALO

26/0

133.63334/44.8143 134.60680/44.4123 76.89 0.579 0.9390/69 252.632361/546.38

66/279.62

BH

26/9.55

133.94677/44.6849 137.80535/43.0915 38.64 1.499 0.9378/69 252.682561/595.61

66/220.52

CGA

26/4.08

133.69225/44.7900 134.20074/44.5800 43.18 0.165 0.9381/69 252.592161/595.66

66/226.83

40% penetration

MVO

26/152.51

86.45738/64.2963 86.45854/64.2958 45.11 0.002 0.9638/69 183.571261/1253.71

66/246.91

PSO

26/152.72

86.45736/64.2963 86.64928/64.2170 56.62 0.664 0.9638/69 183.571161/1252.84

66/247.57

ALO

26/152.77

86.48174/64.2862 87.06582/64.0450 81.02 0.626 0.9639/69 183.630961/1243.67

66/255.96

BH

26/208.65

86.98184/64.0797 90.47858/62.6357 45.23 1.924 0.9632/69 183.943461/1110.03

66/330.27

CGA

26/144.73

86.46711/64.2923 86.60059/64.2371 37.99 0.097 0.9638/69 183.575461/1274.50

66/233.87

60% penetration

MVO

26/382.16

76.95778/68.2193 76.95778/68.2193 44.49 1.31 × 10−6 0.9784/69 134.095161/1641.63

66/246.21

PSO

26/382.17

76.95778/68.2193 76.95778/68.2193 55.59 1.46 × 10−8 0.9784/69 134.092661/1641.64

66/246.23
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Table 9. Cont.

69-Node Radial Test System

Method Node/
Power [kW]

Power Losses
Vworst [p.u]/

Node Imax [A]Minimum [kW]/
Reduction [%]

Average [kW]/
Reduction [%] Time [s] STD [%]

Without DGs — 242.1523 — — — 0.9–1.1 400

60% penetration

ALO

26/386.59

76.95931/68.2186 77.39068/68.0405 86.72 0.741 0.9785/69 133.668961/1637.61

66/251.20

BH

26/358.03

76.99856/68.2024 79.07191/67.3462 43.35 1.824 0.9778/69 136.519561/1653.47

66/227.85

CGA

26/382.31

76.95929/68.2186 76.98586/68.2077 38.06 0.024 0.9784/69 134.443761/1629.83

66/253.45

Table 10. Simulation results in the 10-node mesh test system.

10-Node Mesh Test System

Method Node/
Power [kW]

Power Losses
Vworst [p.u]/

Node Imax [A]Minimum [kW]/
Reduction [%]

Average [kW]/
Reduction [%] Time [s] STD [%]

Without DGs — 190.3237 — — — 0.9–1.1 590

20% penetration

MVO

5/0

104.7510/44.9617 104.7540/44.9601 4.09 0.002 0.9793/8 433.09079/1039.96

10/1471.71

PSO

5/0.02

104.7511/44.9616 105.3226/44.6613 4.72 1.807 0.9793/8 433.09079/1038.24

10/1473.40

ALO

5/32.05

104.7986/44.9367 105.0366/44.8116 6.53 0.180 0.9793/8 433.11539/1012.16

10/1466.94

BH

5/1.87

104.9699/44.8467 105.9958/44.3076 3.48 0.538 0.9793/8 433.48999/1037.61

10/1463.23

CGA

5/18.12

104.8075/44.9320 105.0660/44.7962 3.40 0.117 0.9793/8 433.11639/1087.18

10/1405.83

40% penetration

MVO

5/586.03

58.4855/69.2705 58.4882/69.2691 3.81 0.006 0.9838/7 321.87649/1224.24

10/3213.06
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Table 10. Cont.

10-Node Mesh Test System

Method Node/
Power [kW]

Power Losses
Vworst [p.u]/

Node Imax [A]Minimum [kW]/
Reduction [%]

Average [kW]/
Reduction [%] Time [s] STD [%]

Without DGs — 190.3237 — — — 0.9–1.1 590

40% penetration

PSO

5/611.96

58.4859/69.2703 64.6277/66.0433 4.38 24.212 0.9838/7 321.87649/1227.34

10/3184.03

ALO

5/526.13

58.4985/69.2637 58.6598/69.1789 6.37 0.291 0.9838/7 321.91429/1215.08

10/3281.26

BH

5/1253.67

58.6297/69.1947 60.1293/68.4068 3.45 1.223 0.9838/7 321.88919/1241.74

10/2527.77

CGA

5/813.33

58.5195/69.2526 58.6400/69.1894 3.44 0.137 0.9838/7 321.87629/1215.85

10/2994.17

60% penetration

MVO

5/2440.87

39.3867/79.3054 39.3874/79.3050 3.88 0.002 0.9874/6 211.84329/1396.49

10/3697.63

PSO

5/2448.40

39.3867/79.3054 40.7435/78.5925 4.31 10.312 0.9874/6 211.84329/1396.09

10/3690.50

ALO

5/2445.34

39.3976/79.2997 39.6632/79.1601 6.56 0.690 0.9874/6 212.03559/1399.98

10/3685.25

BH

5/3065.27

39.5207/79.2350 40.6407/78.6465 3.40 1.577 0.9873/6 212.08469/1368.25

10/3096.05

CGA

5/2378.87

39.3908/79.3033 39.4689/79.2622 3.56 0.104 0.9874/6 211.89159/1399.13

10/3755.89

6. Simulations and Results

This section discusses the results obtained by each optimization algorithm used to
solve the OPF problem in the four test systems mentioned above. All the simulations were
performed in Matlab R© (version 2021b), a numerical computing system, running on a laptop
with 4 GB of RAM, an Intel R© CoreTM i5-8250U @1.60 GHz 1.80 GHz processor, a 225-GB
solid-state drive, and Windows 10 PRO. To guarantee the same conditions and evaluate the
repeatability and precision of each solution technique, the codes were executed 100 times.
The following subsections present the results obtained in each radial and mesh test system.

6.1. Results in the Radial Test Systems

This subsection presents and analyzes the results obtained in each radial system used
as test scenario.
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6.1.1. 10-Node Radial Test System

Table 7 reports the results obtained by each optimization algorithm after performing
the simulations in the 10-node radial system at three levels of distributed generation
penetration: 20%, 40%, and 60% of the power supplied by the slack generator. From left
to right, this table details the optimization algorithm implemented; the node where the
DGs are located and the power that each one of them injects into the system in kW; the
minimum power losses (Ploss) in kW and the percentage of reduction with respect to the
base case (%); the average Ploss in kW and the percentage of reduction with respect to the
base case (%); the computation time required by each technique to obtain the solution
(s); the standard deviation of each optimization technique (%); the worst voltage profile
(p.u) and the node where it occurs; and the maximum current in the electrical system (A).
Additionally, the Ploss in the base case (system without DGs), i.e., 223.4181 kW, are shown
in the upper part of the table.

Table 7 compares the results obtained by the five optimization algorithms employed
to solve the OPF problem in the 10-node system. Figures 6 and 7, which were constructed
based on such results, illustrate the differences between these algorithms in terms of
reduction of minimum and average power losses.

Figure 6 compares the reduction of minimum Ploss obtained by each algorithm at the
three penetration levels: 20%, 40%, and 60%. Considering that the MVO is the base scenario,
this figure presents the reduction percentage obtained by the MVO in comparison to the
other optimization algorithms. The number in red indicates that the proposed MVO was
outperformed by the PSO. At 20% penetration, the MVO achieved a reduction of 47.6667%,
which was outperformed by the PSO by 0.0001% but was better than those of the ALO,
CGA, and BH by 0.0113%, 0.0535%, and 0.4486%, respectively. At 40% penetration, the
MVO and PSO obtained a reduction percentage of 63.8522%, outperforming the CGA by
0.0089%, ALO by 0.0140%, and BH by 0.0965%. At 60% penetration, the MVO and PSO
exhibited the same reduction, i.e., 67.7170%, thus outperforming ALO, the CGA, and BH
by 0.0021%, 0.0038%, and 0.0107%, respectively.

Figure 6. Percentage of reduction of minimum power losses obtained by the MVO in the 10-node
radial test system compared to other methodologies.

Figure 7 compares the reduction of average Ploss obtained by the optimization tech-
niques at the three penetration levels: 20%, 40%, and 60% of the power provided by the
slack generator in the base case. As in Figure 6, this figure presents the MVO as the base
scenario. At 20% penetration, the MVO achieved the best reduction, i.e., 47.6654%, thus
outperforming PSO by 0.1284%, the CGA by 0.2484%, ALO by 0.4448%, and BH by 2.0591%.
At 40% penetration, the MVO obtained the best reduction of average Ploss, outperforming
PSO, the CGA, ALO, and BH by 0.0969%, 0.1100%, 0.4888%, and 0.7498%, respectively.
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At 60% penetration, the MVO and PSO exhibited the best reduction of average Ploss, i.e.,
67.7170%, thus outperforming ALO (in the third place) by 0.0021%, the CGA (fourth place)
by 0.0038%, and BH (fifth place) by 0.0107%.

Figure 7. Percentage of reduction of average power losses obtained by the MVO in the 10-node radial
test system compared to other methodologies.

To complete the analysis of the 10-node system, Figure 8, which was created based on
the results presented in Table 7, compares the standard deviation obtained by the optimiza-
tion techniques at the three penetration levels: 20%, 40%, and 60%. At 20% penetration,
the MVO presented the best standard deviation, i.e., 0.005%, thus outperforming the CGA
by 0.1685%, ALO by 0.7162%, PSO by 1.3230%, and BH by 1.7415%. At 40% penetration,
the MVO exhibited the best standard deviation, outperforming the other optimization
algorithms by an average percentage of 0.9915%. At 60% penetration, the MVO and PSO
obtained standard deviations of 9.4× 10−7 and 1.22× 10−8, respectively; thus, the MVO
outperformed the CGA by 0.0610%, BH by 1.1291%, and ALO by 1.6134%. This demon-
strates that, when evaluated in small networks, the MVO produces excellent results in
terms of the repeatability of the solution.

Figure 8. Percentage of standard deviation obtained by the MVO in the 10-node radial test system
compared to other methodologies.

According to these results, the MVO has excellent precision and repeatability, which
guarantees that a good quality solution is obtained every time it is executed. Moreover, it
can be concluded that the MVO is the most appropriate technique to solve the OPF problem
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in small AC networks, as it ensures that a good quality solution is found in a relatively
short time in any distributed generation scenario.

6.1.2. 33-Node Radial Test System

Table 8, which is organized in the same way as Table 7, reports the results of the
simulations performed in the 33-node system after the algorithms were executed 100 times
to solve the OPF problem. Importantly, the Ploss in the base case were 210.9785 kW, as
shown in Table 8. The same as with the 10-node system above, Figures 9–11 compare
the minimum Ploss, average Ploss, and standard deviation, respectively, obtained by each
algorithm at the three penetration levels (i.e., 20%, 40%, and 60%).

Figure 9 shows the reduction of minimum Ploss obtained by each optimization method
in the 33-node radial system at the three penetration levels. At 20% penetration, the MVO
and PSO achieved the same reduction of minimum Ploss with respect to the base case,
i.e., 39.5681%, thus outperforming ALO by 0.0021%, the CGA by 0.0098%, and BH by
0.0603%. At 40% penetration, the MVO and PSO exhibited the same reduction percentage,
i.e., 57.1629%, thus outperforming ALO by 0.0043%, the CGA by 0.0118%, and BH by
0.582%. At 60% penetration, the MVO and PSO obtained the same reduction percentage
once again, i.e., 59.3423%, thus outperforming ALO, the CGA, and BH by 0.0007, 0.0011%,
and 0.0121%, respectively.

Figure 9. Percentage of reduction of minimum power losses obtained by the MVO in the 33-node
radial test system compared to other methodologies.

Considering that the MVO is the base scenario, Figure 10 reports the differences in the
reductions of average Ploss obtained by the MVO and the other optimization algorithms
at the three penetration levels. At 20% penetration, the MVO presented a reduction of
average Ploss of 39.5676%, outperforming the CGA (in the second place) by 0.0496%, ALO
(third place) by 0.0605%, PSO (fourth place) by 0.1857%, and BH (fifth place) by 0.4508%.
At 40% penetration, the MVO exhibited the best reduction of average Ploss, i.e., 57.1626%,
thus outperforming the other algorithms by an average percentage of 0.2443%. At 60%
penetration, both the MVO and PSO achieved a reduction of 59.3423%, outperforming the
CGA by 0.0100%, ALO by 0.1094%, and BH by 0.2806%.

To complete the analysis of the 33-node system, Figure 11 illustrates the standard
deviation obtained by each technique used to solve the OPF problem in AC networks. As
can be seen in this figure, the MVO is superior to the other optimization algorithms in
each distributed generation scenario. At 20% penetration, the MVO presented a standard
deviation of 0.001%, outperforming the CGA by 0.0430%, ALO by 0.0901%, BH by 0.4034%,
and PSO by 0.5231%. At 40% penetration, the MVO exhibited the highest precision,
with a standard deviation of 0.001%, outperforming the other optimization algorithms



Electronics 2022, 11, 1287 26 of 33

by an average percentage of 0.5510%. At 60% penetration, the MVO obtained a standard
deviation of 6.1× 10−7%, thus outperforming PSO by 1× 10−5%, the CGA by 0.0168%,
ALO by 0.3471%, and BH by 0.6068%.

Figure 10. Percentage of reduction of average power losses obtained by the MVO in the 33-node
radial test system compared to other methodologies.

After a general analysis of these results, the MVO proves to be superior to the other
algorithms in terms of standard deviation and precision, which guarantees that a good
quality solution is obtained in a short computation time every time this algorithm is
executed. Therefore, it can be concluded that the MVO is the technique that offers the best
solution, in a short computation time, for medium-sized networks.

Figure 11. Percentage of standard deviation obtained by the MVO in the 33-node radial test system
compared to other methodologies.

6.1.3. 69-Node Radial Test System

Table 9, which is organized in the same way as Tables 7 and 8, presents the results
obtained by the optimization algorithms used to solve the OPF problem in the 69-node
radial test system.

The results reported in Table 9 were used to construct Figures 12–14, which compare
the minimum Ploss, average Ploss, and standard deviation, respectively, obtained by each
optimization algorithm implemented here to solve the OPF problem in the 69-node radial
test system. The same distributed generation scenarios considered in the 10- and 33-node



Electronics 2022, 11, 1287 27 of 33

radial networks above were employed for this system. Regarding minimum Ploss, Figure 12
shows the reduction obtained by the MVO in comparison to the other optimization algo-
rithms. At 20% penetration, the MVO presented a reduction of minimum Ploss of 44.8433%
with respect to the base case, which was only outperformed by the PSO by 0.0003% but was
better than those of ALO, the CGA, and BH by 0.0289%, 0.0533%, and 0.1584%, respectively.
At 40% penetration, the MVO and PSO exhibited a reduction in minimum Ploss of 64.2963%,
thus outperforming the CGA by 0.0040%, ALO by 0.0101%, and BH by 0.2166%. At 60%
penetration, the MVO and PSO achieved a reduction of 68.2193%, outperforming ALO by
0.0006%, the CGA by 0.0006%, and BH by 0.0168%.

Figure 12. Percentage of reduction of minimum power losses obtained by the MVO in the 69-node
radial system compared to other methodologies.

Figure 13 illustrates the differences in average Ploss obtained by the MVO and the
other optimization techniques. At 20% penetration, the MVO achieved the best reduction
of average Ploss, i.e., 44.8410%, thus outperforming the other optimization algorithms by an
average percentage of 0.6703%. At 40% penetration, the MVO exhibited the best reduction
of average Ploss, i.e., 64.2958%, thus outperforming the CGA, PSO, ALO, and BH by 0.0587%,
0.0788%, 0.2508%, and 1.6601%, respectively. Finally, at 60% penetration, the MVO and
PSO presented the same reduction of average Ploss, i.e., 68.2193%, thus outperforming the
CGA by 0.0116%, ALO by 0.1788%, and BH by 0.8731%.

To complete the analysis of the 69-node radial system, Figure 14 shows the standard
deviation obtained by each optimization technique used to solve the OPF problem in in
this network at the three penetration percentages. At 20% penetration, the MVO presented
a standard deviation of 0.003%, thus outperforming the other optimization algorithms by
an average percentage of 0.9329%. At 40% penetration, the MVO exhibited a standard
deviation of 0.002%, thus outperforming the CGA, ALO, PSO, and BH by 0.0958%, 0.6241%,
1.6621%, and 1.9223%, respectively. Finally, at 60% penetration, the MVO and PSO ob-
tained standard deviations of 1.3× 10−6 and 1.5× 10−6, respectively; therefore, the MVO
outperformed the CGA by 0.0237%, ALO by 0.7409%, and BH by 1.8238%.

These results demonstrate once again that the MVO is superior to the other techniques
in terms of standard deviation, making it the most precise and appropriate method to solve
the OPF problem in large AC networks because it guarantees that good quality solutions
are obtained every time it is executed.



Electronics 2022, 11, 1287 28 of 33

Figure 13. Percentage of reduction of average power losses obtained by the MVO in the 69-node
radial system compared to other methodologies.

Figure 14. Percentage of standard deviation obtained by the MVO in the 69-node radial system
compared to other methodologies.

6.2. Results in the Mesh Test System

This section presents and analyzes the results obtained in the mesh system used as a
test scenario.

10-Node Mesh Test System

Table 10 presents the results obtained by the optimization algorithms to solve the OPF
problem in the 10-node mesh system after they were executed 100 times. The information
appears in the same order as in Tables 3–5. Figures 15–17 resulted from analyzing Table 10.
These figures compare the results obtained by the optimization algorithms in terms of
minimum Ploss, average Ploss, and standard deviation, respectively.

Figure 15 compares the results achieved by the optimization algorithms to obtain
the minimum Ploss in the 10-node mesh system with 20%, 40%, and 60% penetration. In
the figure mentioned, the y-axis denotes the improvement, in terms of minimum power
loss reduction, obtained by the MVO compared to the other optimization algorithms; in
turn, the x-axis specifies the methods used for comparison. At 20% penetration, the MVO
has the best reduction in minimum Ploss, outperforming PSO, ALO, the CGA, and BHO
by 0.0001%, 0.0250%, 0.0296%, and 0.1150%, respectively. At 40% penetration, the MVO
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presents a reduction in minimum Ploss of 69.2705%, outperforming PSO by 0.0002%, ALO
by 0.0068%, the CGA by 0.0179, and BH by 0.0758%. Finally, at 60% penetration, the MVO
presents the best reduction in minimum Ploss again, i.e., 79.3054% (the same as that of PSO),
thus outperforming the CGA by 0.0021%, ALO by 0.0057%, and BH by 0.0704%.

Figure 15. Percentage of reduction of minimum power losses obtained by the MVO in the 10-node
mesh test system compared to other methodologies.

Figure 16 compares the average Ploss obtained by the MVO and the other optimization
algorithms in the 10-node mesh test system (with the MVO as the base case). This analysis
was performed employing the same three penetration percentages as in Figure 15. At 20%
penetration, the MVO presents a reduction of average Ploss of 44.9601%, outperforming
ALO, the CGA, PSO, and BHO by 0.1485%, 0.1639%, 0.2987%, and 0.6524%, respectively. At
40% penetration, the MVO exhibits a reduction of average Ploss of 69.2691%, outperforming
the other optimization algorithms by 1.0645%. At 60% penetration, the MVO has the best
reduction of average Ploss again, outperforming the CGA, ALO, BHO, and PSO by 0.0428%,
0.1449%, 0.6585%, and 0.7125%, respectively.

To conduct the analysis of the mesh system, the precision and repeatability of all the
algorithms are compared in Figure 17. As with the minimum and average Ploss, the standard
deviation is assessed with 20%, 40%, and 60% penetration. In the first case, the MVO
presents an outstanding standard deviation of 0.002%, outperforming the CGA by 0.1152%,
ALO by 0.1775%, BH by 0.5359%, and PSO by 1.8050%. In a 40% penetration scenario, the
MVO has a standard deviation of 0.006%, outperforming the other optimization algorithms
by a significant average of 6.46%. Finally, at 60% penetration, the MVO presents an
outstanding solution precision with a standard deviation of 0.002%, outperforming the
CGA by 0.1026%, ALO by 0.6884%, BH by 1.5748, and PSO by 10.3097%.

Analyzing the results obtained and discussed in this section, it is possible to note
that, in general, the MVO provides the best solution. It offers an outstanding solution
quality, short processing time, and a good standard deviation; as a result, it finds an
excellent solution every time the algorithm is run. Therefore, the MVO is the most suitable
optimization methodology to solve the OPF problem in AC networks of any type and size.
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Figure 16. Percentage of reduction of average power losses obtained by the MVO in the 10-node
mesh test system compared to other methodologies.

Figure 17. Percentage of standard deviation obtained by the MVO in the 10-node mesh test system
compared to other methodologies.

7. Conclusions

In this paper, we proposed the implementation of the MVO to solve the OPF problem
in AC networks using a master–slave methodology. The master stage uses the MVO to
determine the optimal power to be injected by each DG in the AC network. The slave
stage employs SA (a numerical method) to assess the impact of every solution provided
by the master stage on the objective function and the constraints of the problem. In order
to demonstrate the robustness of the proposed algorithm, it was compared with some of
the best optimization techniques that have been reported in the specialized literature to
solve the OPF problem in AC networks: PSO, ALO, BH, and the CGA. All the algorithms
employed in this study were tuned so that they could find the best solution to the OPF
problem. To test each algorithm, the simulations were performed in the 10-, 33-, and
69-node radial systems and the 10-node mesh system using three levels of distributed
generation penetration: 20%, 40%, and 60% of the power supplied by the slack generator in
the base case. Moreover, each algorithm was executed 100 times to evaluate its standard
deviation and precision.
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According to the results in radial systems, the MVO obtained the best solution re-
garding the reduction of average Ploss in an adequate computation time and presented the
lowest standard deviation. Moreover, in most cases, the MVO achieved the best percentage
of reduction of minimum Ploss, although it was outperformed only by PSO by an almost
negligible difference in the 10- and 69-node radial systems at a 20% penetration level. In
terms of repeatability, the MVO presented low standard deviations (its highest value was
1× 10−3) and outperformed most of the other optimization techniques in the different test
scenarios. Thus, this technique proves to be efficient in terms of precision and repeatability,
obtaining good quality solutions to the OPF problem every time the algorithm is executed.

In the mesh topology, the MVO algorithm obtained the best solution in all the scenarios
of distributed generation evaluated in this study, reducing minimum power losses by
0.029% and average power losses by 0.59% with respect to the other methods used here for
comparison. The MVO achieved these results in a short processing time with the lowest
standard deviation (under 0.006%). This proves its efficiency in terms of solution quality
and processing times, as well as the repeatability of its solutions. Therefore, the MVO
obtains a good-quality solution to the OPF problem in AC mesh networks every time its
algorithm is run. From the paragraphs above, it is possible to conclude that the MVO is the
best strategy to solve the OPF problem in mesh or radial AC networks.

Future studies can use this methodology for optimal power management in mesh or
radial AC networks by employing power dispatch in energy storage devices and power
loads considering their behavior in a 24-h cycle. This methodology can also be implemented
in the planning of AC electrical systems to size distributed energy resources (generators,
reactive elements, and energy storage) when the objective functions are to reduce the
operating cost of the network, minimize CO2 emissions, and improve the operating condi-
tions. Finally, to reduce processing times and use parallel processing tools, future research
can propose a parallel version of this methodology to shorten the processing times of the
individuals that compose the populations at each iteration. This would considerably reduce
the total processing times of the method.
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