Mostrar el registro sencillo del ítem

dc.contributor.authorRiffo, Sebastián
dc.contributor.authorGil-González, Walter
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorRestrepo, Carlos
dc.contributor.authorMuñoz, Javier
dc.date.accessioned2023-07-19T18:16:47Z
dc.date.available2023-07-19T18:16:47Z
dc.date.issued2022
dc.date.submitted2023
dc.identifier.citationRiffo S, Gil-González W, Montoya OD, Restrepo C, Muñoz J. Adaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPL. Mathematics. 2022; 10(22):4321. https://doi.org/10.3390/math10224321spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12164
dc.description.abstractThis paper presents an adaptive control to stabilize the output voltage of a DC–DC boost converter that feeds an unknown constant power load (CPL). The proposed controller employs passivity-based control (PBC), which assigns a desired system energy to compensate for the negative impedance that may be generated by a CPL. A proportional-integral (PI) action that maintains a passive output is added to the PBC to impose the desired damping and enhance disturbance rejection behavior, thus forming a PI+PBC control. In addition, the proposed controller includes two estimators, i.e., immersion and invariance (I&I), and disturbance observer (DO), in order to estimate CPL and supply voltage for the converter, respectively. These observers become the proposed controller for an adaptive, sensorless PI+PBC control. Phase portrait analysis and experimental results have validated the robustness and effectiveness of the adaptive proposed control approach. These results show that the proposed controller adequately regulates the output voltage of the DC–DC boost converter under variations of the input voltage and CPL simultaneously. © 2022 by the authors.spa
dc.format.extent15 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceMathematics Volume 10, Issue 22November 2022 Article number 4321spa
dc.titleAdaptive Sensorless PI+Passivity-Based Control of a Boost Converter Supplying an Unknown CPLspa
dcterms.bibliographicCitationMathew, E.C., Das, A. Integration of renewable energy sources with MVDC network (2020) 9th IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2020, art. no. 9379756. Cited 2 times. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9379328 ISBN: 978-172815672-9 doi: 10.1109/PEDES49360.2020.9379756spa
dcterms.bibliographicCitationBharatee, A., Ray, P.K., Subudhi, B., Ghosh, A. Power Management Strategies in a Hybrid Energy Storage System Integrated AC/DC Microgrid: A Review (2022) Energies, 15 (19), art. no. 7176. Cited 7 times. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15197176spa
dcterms.bibliographicCitationSilani, A., Cucuzzella, M., Scherpen, J.M.A., Yazdanpanah, M.J. Robust output regulation for voltage control in DC networks with time-varying loads (2022) Automatica, 135, art. no. 109997. Cited 5 times. http://www.elsevier.com/wps/find/journaldescription.cws_home/270/description#description doi: 10.1016/j.automatica.2021.109997spa
dcterms.bibliographicCitationIskender, I., Genc, N. Power Electronic Converters in DC Microgrid (2020) Power Systems, pp. 115-137. Cited 7 times. www.springer.com/series/4622 doi: 10.1007/978-3-030-23723-3_6spa
dcterms.bibliographicCitationRamos-Paja, C.A., Danilo-Montoya, O., Grisales-Noreña, L.F. Photovoltaic System for Microinverter Applications Based on a Non-Electrolytic-Capacitor Boost Converter and a Sliding-Mode Controller (2022) Electronics (Switzerland), 11 (18), art. no. 2923. Cited 3 times. www.mdpi.com/journal/electronics doi: 10.3390/electronics11182923spa
dcterms.bibliographicCitationXie, D., Wang, L., Zhang, Z., Wang, S., Kang, L., Yao, J. Photovoltaic Energy Storage System Based on Bidirectional LLC Resonant Converter Control Technology (2022) Energies, 15 (17), art. no. 6436. http://www.mdpi.com/journal/energies/ doi: 10.3390/en15176436spa
dcterms.bibliographicCitationPrieto-Araujo, E., Bogdan Bolboceanu, D., Sanchez-Sanchez, E., Gomis-Bellmunt, O. Design methodology of the primary droop voltage control for DC microgrids (2017) 2017 IEEE 2nd International Conference on Direct Current Microgrids, ICDCM 2017, art. no. 8001097, pp. 529-535. Cited 3 times. ISBN: 978-147999879-1 doi: 10.1109/ICDCM.2017.8001097spa
dcterms.bibliographicCitationGao, F., Kang, R., Cao, J., Yang, T. Primary and secondary control in DC microgrids: a review (2019) Journal of Modern Power Systems and Clean Energy, 7 (2), pp. 227-242. Cited 132 times. www.springer.com/40565 doi: 10.1007/s40565-018-0466-5spa
dcterms.bibliographicCitationMoayedi, S., Davoudi, A. Distributed Tertiary Control of DC Microgrid Clusters (2016) IEEE Transactions on Power Electronics, 31 (2), art. no. 7089280, pp. 1717-1733. Cited 223 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4712525 doi: 10.1109/TPEL.2015.2424672spa
dcterms.bibliographicCitationOucheriah, S. Nonlinear control of the boost converter subject to unknown constant power load and parasitics (2023) International Journal of Electronics Letters, 11 (1), pp. 30-40. www.tandfonline.com/toc/tetl20/current doi: 10.1080/21681724.2021.2025438spa
dcterms.bibliographicCitationEmadi, A., Khaligh, A., Rivetta, C.H., Williamson, G.A. Constant power loads and negative impedance instability in automotive systems: Definition, modeling, stability, and control of power electronic converters and motor drives (2006) IEEE Transactions on Vehicular Technology, 55 (4), pp. 1112-1125. Cited 752 times. doi: 10.1109/TVT.2006.877483spa
dcterms.bibliographicCitationShi, L., Lei, W., Li, Z., Huang, J., Cui, Y., Wang, Y. Bilinear Discrete-Time Modeling and Stability Analysis of the Digitally Controlled Dual Active Bridge Converter (2017) IEEE Transactions on Power Electronics, 32 (11), art. no. 7790849, pp. 8787-8799. Cited 64 times. http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4712525 doi: 10.1109/TPEL.2016.2640659spa
dcterms.bibliographicCitationChang, Y., Zhou, P., Niu, B., Wang, H., Xu, N., Alassafi, M.O., Ahmad, A.M. Switched-observer-based adaptive output-feedback control design with unknown gain for pure-feedback switched nonlinear systems via average dwell time (Open Access) (2021) International Journal of Systems Science, 52 (9), pp. 1731-1745. Cited 54 times. http://www.tandf.co.uk/journals/titles/00207721.asp doi: 10.1080/00207721.2020.1863503spa
dcterms.bibliographicCitationZhang, H., Wang, H., Niu, B., Zhang, L., Ahmad, A.M. Sliding-mode surface-based adaptive actor-critic optimal control for switched nonlinear systems with average dwell time (2021) Information Sciences, 580, pp. 756-774. Cited 75 times. http://www.journals.elsevier.com/information-sciences/ doi: 10.1016/j.ins.2021.08.062spa
dcterms.bibliographicCitationChen, Q.-X., Chang, X.-H. Resilient filter of nonlinear network systems with dynamic event-triggered mechanism and hybrid cyber attack (Open Access) (2022) Applied Mathematics and Computation, 434, art. no. 127419. Cited 18 times. https://www.journals.elsevier.com/applied-mathematics-and-computation doi: 10.1016/j.amc.2022.127419spa
dcterms.bibliographicCitationHamidi, S.A., Nasiri, A. Stability analysis of a DC–DC converter for battery energy storage system feeding CPL Proceedings of the 2015 IEEE International Telecommunications Energy Conference (INTELEC), pp. 1-5. Cited 8 times. Osaka, Japan, 18–22 October 2015spa
dcterms.bibliographicCitationSingh, S., Fulwani, D., Kumar, V. Robust sliding-mode control of dc/dc boost converter feeding a constant power load (2015) IET Power Electronics, 8 (7), pp. 1230-1237. Cited 160 times. https://ietresearch.onlinelibrary.wiley.com/journal/17554543 doi: 10.1049/iet-pel.2014.0534spa
dcterms.bibliographicCitationWu, J., Lu, Y. Adaptive Backstepping Sliding Mode Control for Boost Converter With Constant Power Load (2019) IEEE Access, 7, art. no. 8689067, pp. 50797-50807. Cited 81 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639 doi: 10.1109/ACCESS.2019.2910936spa
dcterms.bibliographicCitationMartinez-Treviño, B.A., El Aroudi, A., Vidal-Idiarte, E., Cid-Pastor, A., Martinez-Salamero, L. Sliding-mode control of a boost converter under constant power loading conditions (Open Access) (2019) IET Power Electronics, 12 (3), pp. 521-529. Cited 48 times. http://digital-library.theiet.org/content/journals/iet-pel doi: 10.1049/iet-pel.2018.5098spa
dcterms.bibliographicCitationHe, W., Li, S., Yang, J., Wang, Z. Incremental passivity based control for DC-DC boost converter with circuit parameter perturbations using nonlinear disturbance observer (2016) IECON Proceedings (Industrial Electronics Conference), art. no. 7794073, pp. 1353-1358. Cited 12 times. ISBN: 978-150903474-1 doi: 10.1109/IECON.2016.7794073spa
dcterms.bibliographicCitationHe, W., Li, S., Yang, J., Wang, Z. Incremental passivity based control for DC-DC boost converters under time-varying disturbances via a generalized proportional integral observer (Open Access) (2018) Journal of Power Electronics, 18 (1), pp. 147-169. Cited 16 times. http://www.jpe.or.kr/ doi: 10.6113/JPE.2018.18.1.147spa
dcterms.bibliographicCitationFarsizadeh, H., Gheisarnejad, M., Mosayebi, M., Rafiei, M., Khooban, M.H. An Intelligent and Fast Controller for DC/DC Converter Feeding CPL in a DC Microgrid (Open Access) (2020) IEEE Transactions on Circuits and Systems II: Express Briefs, 67 (6), art. no. 8764402, pp. 1104-1108. Cited 42 times. http://www.ieee-cas.org doi: 10.1109/TCSII.2019.2928814spa
dcterms.bibliographicCitationHe, W., Shang, Y. Finite-Time Parameter Observer-Based Sliding Mode Control for a DC/DC Boost Converter with Constant Power Loads (2022) Electronics (Switzerland), 11 (5), art. no. 819. Cited 6 times. https://www.mdpi.com/2079-9292/11/5/819/pdf doi: 10.3390/electronics11050819spa
dcterms.bibliographicCitationZhang, X., He, W., Zhang, Y. An Adaptive Output Feedback Controller for Boost Converter (Open Access) (2022) Electronics (Switzerland), 11 (6), art. no. 905. Cited 5 times. https://www.mdpi.com/2079-9292/11/6/905/pdf doi: 10.3390/electronics11060905spa
dcterms.bibliographicCitationZhang, X., Martinez-Lopez, M., He, W., Shang, Y., Jiang, C., Moreno-Valenzuela, J. Sensorless control for dc–dc boost converter via generalized parameter estimation-based observer (2021) Applied Sciences (Switzerland), 11 (16), art. no. 7761. Cited 11 times. https://www.mdpi.com/2076-3417/11/16/7761/pdf doi: 10.3390/app11167761spa
dcterms.bibliographicCitationSerra, F., Magaldi, G., Martin Fernandez, L., Guillermo, L., De Angelo, C. IDA-PBC controller of a DC-DC boost converter for continuous and discontinuous conduction mode (Open Access) (2018) IEEE Latin America Transactions, 16 (1), pp. 52-58. Cited 9 times. http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=9907 doi: 10.1109/TLA.2018.8291454spa
dcterms.bibliographicCitationGil-González, W., Montoya, O.D., Espinosa-Perez, G. Adaptive control for second-order DC-DC converters: PBC approach (Open Access) (2021) Modeling, Operation, and Analysis of DC Grids: From High Power DC Transmission to DC Microgrids, pp. 289-310. Cited 5 times. https://www.sciencedirect.com/book/9780128221013 ISBN: 978-012822101-3; 978-012822102-0 doi: 10.1016/B978-0-12-822101-3.00016-2spa
dcterms.bibliographicCitationAL-Nussairi, M.K., Bayindir, R., Padmanaban, S., Mihet-Popa, L., Siano, P. Constant power loads (CPL) with Microgrids: Problem definition, stability analysis and compensation techniques (Open Access) (2017) Energies, 10 (10), art. no. 1656. Cited 98 times. http://www.mdpi.com/1996-1073/10/10/1656/pdf doi: 10.3390/en10101656spa
dcterms.bibliographicCitationOrtega, R., Perez, J.A.L., Nicklasson, P.J., Sira-Ramirez, H.J. (2013) Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications. Cited 1779 times. Springer Science & Business Media, Berlin/Heidelberg, Germanyspa
dcterms.bibliographicCitationOrtega, R., van der Schaft, A., Castaños, F., Astolfi, A. Control by interconnection and standard passivity-based control of port-hamiltonian systems (Open Access) (2008) IEEE Transactions on Automatic Control, 53 (11), pp. 2527-2542. Cited 263 times. doi: 10.1109/TAC.2008.2006930spa
dcterms.bibliographicCitationHarandi, M.R.J., Taghirad, H.D. On the matching equations of kinetic energy shaping in IDA-PBC (Open Access) (2021) Journal of the Franklin Institute, 358 (16), pp. 8639-8655. Cited 5 times. https://www.journals.elsevier.com/journal-of-the-franklin-institute doi: 10.1016/j.jfranklin.2021.08.034spa
dcterms.bibliographicCitationCisneros, R., Gao, R., Ortega, R., Husain, I. A PI+passivity-based control of a wind energy conversion system enabled with a solid-state transformer (Open Access) (2021) International Journal of Control, 94 (9), pp. 2453-2463. Cited 3 times. www.tandf.co.uk/journals/titles/00207179.asp doi: 10.1080/00207179.2019.1710768spa
dcterms.bibliographicCitationKrstic, M., Kokotovic, P.V., Kanellakopoulos, I. (1995) Nonlinear and Adaptive Control Design. Cited 9817 times. John Wiley & Sons Inc., Hoboken, NJ, USAspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doi10.3390/math10224321
dc.subject.keywordsAdaptive Control Designspa
dc.subject.keywordsAsymptotic Stability Convergence;spa
dc.subject.keywordsHamiltonian Function;spa
dc.subject.keywordsPassivity-Based Control;spa
dc.subject.keywordsSensorless Control Design;spa
dc.subject.keywordsUnknown Constant Power Loadspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_6501spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.