Mostrar el registro sencillo del ítem

dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorMorales-Duran, Juan C.
dc.contributor.authorVelez-Garcia, Sebastián
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGil-González, Walter
dc.date.accessioned2023-05-08T13:29:40Z
dc.date.available2023-05-08T13:29:40Z
dc.date.issued2023-01-23
dc.date.submitted2023-05-05
dc.identifier.citationGrisales-Noreña, L. F., Morales-Duran, J. C., Velez-Garcia, S., Montoya, O. D., & Gil-González, W. (2023). Power flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurations. Results in Engineering, 17 doi:10.1016/j.rineng.2023.100915spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11845
dc.description.abstractThe load flow problem (LFP) in power distribution networks allows us to find the nodal voltage values within the electrical systems. These values, along with the system parameters, are useful to identify the (technical,economic, and environmental) operational indices and constraints that describe the system’s behavior under anestablished load scenario. The solution of the LFP requires the implementation of numerical methods due toits mathematical model’s nonlinear and non-convex nature. In the specialized literature, multiple classical and modern methods seek to improve the solutions achieved in terms of convergence and processing times. However, the most efficient method in both radial and meshed networks has not been determined. Consequently, this study identified the most widely used and efficient classical and modern methods reported in the literature: Newton–Raphson (NR), Gauss-Seidel (GS), Iterative Sweep (IS), Successive Approximations (SA), Taylor’s Series (TS), and Triangular Method (TM). The analysis also identified and selected the most common test scenarios to validate the effectiveness of the proposed solution methods: 10-, 33-, and 69-node systems in radial and meshed topologies. The software employed to validate the processing times and convergence of the numerical methods was MATLAB. The results obtained by the different methods were compared, taking the NR methodology as the base case. Thanks to its convergence, this method is used in commercial software packages to solve the LFP, as is the case of DIgSILENT. After analyzing the results of this study, we can state that all the selected methods were suitable in terms of convergence. The greatest errors were 6.064 × 10−07 for power losses and 8.017 × 10−04 for nodal voltages, which are negligible values for practical purposes in radial and meshed networks. In this work, processing time was employed as the selection criterion, and TM was identified as the most efficient method for solving the AC power flow in radial and meshed topologies for all the scenarios analyzed.spa
dc.format.extent9 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceResults in Engineering - Vol. 17 (2023)spa
dc.titlePower flow methods used in AC distribution networks: An analysis of convergence and processing times in radial and meshed grid configurationsspa
dcterms.bibliographicCitationO.D. Montoya, A. Molina-Cabrera, D.A. Giral-Ramírez, E. Rivas-Trujillo, J.A. Alarcón-Villamil, Optimal integration of D-STATCOM in distribution grids for an nual operating costs reduction via the discrete version sine-cosine algorithm, Results Eng. 16 (2022) 100768, https://doi.org/10.1016/j.rineng.2022.100768.spa
dcterms.bibliographicCitationF. Capitanescu, Critical review of recent advances and further developments needed in ac optimal power flow, Electr. Power Syst. Res. 136 (2016) 57–68.spa
dcterms.bibliographicCitationO.D. Montoya, V.M. Garrido, W. Gil-González, L.F. Grisales-Noreña, Power flow analysis in dc grids: two alternative numerical methods, IEEE Trans. Circuits Syst. II, Express Briefs 66 (11) (2019) 1865–1869.spa
dcterms.bibliographicCitationJ. Montano, O.D. Garzón, A.A.R. Muñoz, L. Grisales-Noreña, O.D. Montoya, Appli cation of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks, Results Eng. 16 (2022) 100654.spa
dcterms.bibliographicCitation[5] I. Diahovchenko, R. Petrichenko, L. Petrichenko, A. Mahnitko, P. Korzh, M. Kolcun, Z. Conka, ˇ Mitigation of transformers’ loss of life in power distribution networks with high penetration of electric vehicles, Results Eng. 15 (2022) 100592.spa
dcterms.bibliographicCitationM. John, A general method of digital network analysis particularly suitable for use with low-speed computers, Proceedings of the IEE-Part A: Power Engineering 108 (41) (1961) 369–382.spa
dcterms.bibliographicCitationM. Laughton, M.H. Davies, Numerical Techniques in Solution of Power-System Load Flow Problems, Proceedings of the Institution of Electrical Engineers, vol. 111, IET, 1964, pp. 1575–1588.spa
dcterms.bibliographicCitationA. Vijayvargia, S. Jain, S. Meena, V. Gupta, M. Lalwani, Comparison between different load flow methodologies by analyzing various bus systems, Int. J. Electr. Eng. 9 (2) (2016) 127–138.spa
dcterms.bibliographicCitationM.L. Manrique, O.D. Montoya, V.M. Garrido, L.F. Grisales-Noreña, W. Gil-González, Sine-cosine algorithm for opf analysis in distribution systems to size distributed generators, in: Workshop on Engineering Applications, Springer, 2019, pp. 28–39.spa
dcterms.bibliographicCitationH.F. Farahani, A. Kazemi, S. Hosseini, A new algorithm for identifying branch and node after any bus to use load-flow in radial distribution systems, in: 2007 42nd International Universities Power Engineering Conference, IEEE, 2007, pp. 1129spa
dcterms.bibliographicCitationO.D. Montoya, On linear analysis of the power flow equations for dc and ac grids with cpls, IEEE Trans. Circuits Syst. II, Express Briefs 66 (12) (2019) 2032–2036spa
dcterms.bibliographicCitationL.F. Grisales, B.J. Restrepo Cuestas, et al., Ubicación y dimensionamiento de generación distribuida: Una revisión, Ciencia e Ingeniería Neogranadina 27 (2) (2017) 157–176spa
dcterms.bibliographicCitationK. López-Rodríguez, W. Gil-González, A. Escobar-Mejía, Design and implementation of a pi-pbc to manage bidirectional power flow in the dab of an sst, Results Eng. (2022) 100437.spa
dcterms.bibliographicCitationC.A.P. Meneses, J.R.S. Mantovani, Improving the grid operation and reliability cost of distribution systems with dispersed generation, IEEE Trans. Power Syst. 28 (3) (2013) 2485–2496.spa
dcterms.bibliographicCitationJ.J. Grainger, W.D. Stevenson, Power systems analysis, 1996spa
dcterms.bibliographicCitationO.D. Montoya, A. Molina-Cabrera, J.C. Hernández, A comparative study on power flow methods applied to ac distribution networks with single-phase representation, Electronics 10 (21) (2021) 2573.spa
dcterms.bibliographicCitationJ.-H. Teng, A modified Gauss–Seidel algorithm of three-phase power flow analysis in distribution networks, Int. J. Electr. Power Energy Syst. 24 (2) (2002) 97–102.spa
dcterms.bibliographicCitationJ.-H. Teng, A direct approach for distribution system load flow solutions, IEEE Trans. Power Deliv. 18 (3) (2003) 882–887spa
dcterms.bibliographicCitationO.D. Montoya, L.F. Grisales-Noreña, W. Gil-González, Triangular matrix formulation for power flow analysis in radial dc resistive grids with cpls, IEEE Trans. Circuits Syst. II, Express Briefs 67 (6) (2019) 1094–1098spa
dcterms.bibliographicCitationA. Marini, S. Mortazavi, L. Piegari, M.-S. Ghazizadeh, An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive mod eling of distributed generations, Electr. Power Syst. Res. 170 (2019) 229–2spa
dcterms.bibliographicCitationW. Wu, B. Zhang, A three-phase power flow algorithm for distribution system power flow based on loop-analysis method, Int. J. Electr. Power Energy Syst. 30 (1) (2008) 8–15.spa
dcterms.bibliographicCitationS.Y. Bocanegra, W. Gil-González, O.D. Montoya, A new iterative power flow method for ac distribution grids with radial and mesh topologies, in: 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), vol. 4, IEEE, 2020, pp. 1–5.spa
dcterms.bibliographicCitationL.F. Grisales-Noreña, O.D. Montoya, C.A. Ramos-Paja, Q. Hernandez-Escobedo, A.-J. Perea-Moreno, Optimal location and sizing of distributed generators in dc networks using a hybrid method based on parallel pbil and pso, Electronics 9 (11) (2020) 1808.spa
dcterms.bibliographicCitationA. Garces, Uniqueness of the power flow solutions in low voltage direct current grids, Electr. Power Syst. Res. 151 (2017) 149–153.spa
dcterms.bibliographicCitationJ.A. Ocampo Toro, Despacho optimo de potencia en microrredes de corriente con tinua considerando variacion en la generacion eolica y solar y el comportamiento de demanda de energia, 2021.spa
dcterms.bibliographicCitationO.D. Montoya, W. Gil-González, D.A. Giral, On the matricial formulation of iterative sweep power flow for radial and meshed distribution networks with guarantee of convergence, Appl. Sci. 10 (17) (2020) 5802spa
dcterms.bibliographicCitationO.D. Montoya, W. Gil-González, L. Grisales-Noreña, An exact minlp model for optimal location and sizing of dgs in distribution networks: a general algebraic modeling system approach, Ain Shams Eng. J. 11 (2) (2020) 409–418spa
dcterms.bibliographicCitationA. Kumar Sharma, V. Murty, Analysis of mesh distribution systems considering load models and load growth impact with loops on system performance, J. Inst. Eng. (India), Ser. B 95 (4) (2014) 295–318.spa
dcterms.bibliographicCitationL.F. Grisales-Noreña, O.D. Montoya, W.J. Gil-González, A.-J. Perea-Moreno, M.-A. Perea-Moreno, A comparative study on power flow methods for direct-current networks considering processing time and numerical convergence errors, Electronics 9 (12) (2020) 2062spa
dcterms.bibliographicCitationR. Villena-Ruiz, A. Honrubia-Escribano, J. Fortmann, E. Gómez-Lázaro, Field valida tion of a standard type 3 wind turbine model implemented in digsilent-powerfactory following iec 61400-27-1 guidelines, Int. J. Electr. Power Energy Syst. 116 (2020) 105553.spa
dcterms.bibliographicCitationD.L. Bernal-Romero, O.D. Montoya, A. Arias-Londoño, Solution of the optimal reactive power flow problem using a discrete-continuous cbga implemented in the digsilent programming language, Computers 10 (11) (2021) 151spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.identifier.doihttps://doi.org/10.1016/j.rineng.2023.100915
dc.subject.keywordsLoad flowspa
dc.subject.keywordsPower distribution systemspa
dc.subject.keywordsConvergence analysisspa
dc.subject.keywordsProcessing timespa
dc.subject.keywordsMeshed networkspa
dc.subject.keywordsRadial networkspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audiencePúblico generalspa
dc.publisher.sedeCampus Tecnológicospa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.