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The load flow problem (LFP) in power distribution networks allows us to find the nodal voltage values within 
the electrical systems. These values, along with the system parameters, are useful to identify the (technical, 
economic, and environmental) operational indices and constraints that describe the system’s behavior under an 
established load scenario. The solution of the LFP requires the implementation of numerical methods due to 
its mathematical model’s nonlinear and non-convex nature. In the specialized literature, multiple classical and 
modern methods seek to improve the solutions achieved in terms of convergence and processing times. However, 
the most efficient method in both radial and meshed networks has not been determined. Consequently, this 
study identified the most widely used and efficient classical and modern methods reported in the literature: 
Newton–Raphson (NR), Gauss-Seidel (GS), Iterative Sweep (IS), Successive Approximations (SA), Taylor’s Series 
(TS), and Triangular Method (TM). The analysis also identified and selected the most common test scenarios to 
validate the effectiveness of the proposed solution methods: 10-, 33-, and 69-node systems in radial and meshed 
topologies. The software employed to validate the processing times and convergence of the numerical methods 
was MATLAB. The results obtained by the different methods were compared, taking the NR methodology as the 
base case. Thanks to its convergence, this method is used in commercial software packages to solve the LFP, as is 
the case of DIgSILENT. After analyzing the results of this study, we can state that all the selected methods were 
suitable in terms of convergence. The greatest errors were 6.064 × 10−07 for power losses and 8.017 × 10−04 for 
nodal voltages, which are negligible values for practical purposes in radial and meshed networks. In this work, 
processing time was employed as the selection criterion, and TM was identified as the most efficient method for 
solving the AC power flow in radial and meshed topologies for all the scenarios analyzed.
Nomenclature

𝛿 Voltage angles

𝕀𝑑 Currents demanded at the nodes

𝕀𝑟 Branch currents

ℙ𝑖 Active power injected into/demanded at node i
ℚ𝑖 Reactive power injected into/demanded at node i
𝕊∗
𝑑

Complex power demanded

𝕊∗
𝑔

Complex power generated
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𝕊∗
𝑖

Net complex power injected into node i
𝕋 Triangular matrix

𝕍 Voltage magnitude

𝕍𝑑 Complex voltage at the demand nodes

𝕍 ∗
𝑖

Complex voltage at node i
𝕍𝑗 Complex voltage at node j
𝕍𝑛 Nodal voltage

𝕍𝑟 Branch voltage

𝕍𝑠 slack node voltage
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𝕐𝑏𝑢𝑠 Admittance matrix of the system that represents the lines and 
impedances connected to the nodes

𝕐𝑑𝑠 Subcomponent of the admittance matrix that connects the 
𝑠𝑙𝑎𝑐𝑘 and demand nodes

𝕐𝑖𝑗 Component of the admittance matrix that interconnects nodes 
i and j

ℤ𝑑𝑑 Impedance matrix

ℤ𝑟 Branch impedance matrix

𝐴𝑑 Incidence matrix of the demand node

𝐴𝑠 Incidence matrix of the slack node

𝐽 Jacobian matrix

t Iteration counter

Acronyms

CREG Energy and Gas Regulation Commission

LFP Load Flow Problem

NR Newton–Raphson

GS Gauss–Seidel

SA Successive Approximations

IS Iterative Sweep

TM Triangular Method

TS Taylor’s Series

AC Alternating Current

p.u Per unit

1. Introduction

The power generation and consumption process involve some in-

termediate stages that enable the power to be transported from large 
generators to consumption points [1]. First, transmission networks op-

erate at extra-high voltage levels, thus reducing electrical losses over 
long distances [2]. Then, there are the distribution networks, which re-

ceive power from the distribution substations fed by the transmission 
networks and deliver it to end users at lower voltage levels (CREG lev-

els 1 and 2).

Due to the variability in power generation and demand within multi-

node electricity systems, it is necessary to identify a tool to assess the 
impact of various power generation and demand levels on the system’s 
electrical variables: nodal voltages and line currents. The objective is to 
evaluate the technical, economic, and environmental indicators of the 
network proposed by the operator, as well as the technical constraints 
associated with the operation of electrical power systems (e.g., bounds 
in the nodal voltage profiles, and line currents, line loadability, power 
loss levels, among others) [3–5]. Such a tool is known as load flow.

It is worth mentioning that the mathematical formulation of the LFP 
has no analytical solution due to the nonlinearity of the system of equa-

tions. Therefore, it must be solved using numerical methods [6], many 
of which have been proposed over the last decades to address the prob-

lem in both meshed and radial AC networks. Said methods include GS 
[7], [8], NR [8], [9], IS [10], SA [11], linear approximations or TS [12], 
among others, which are evaluated in different test scenarios and com-

pared with other methods to determine their effectiveness in terms of 
convergence and, in some cases, processing times. Such methods also 
guarantee the results’ reliability by controlling the problem solution’s 
convergence process so that the solution adequately represents the ana-

lyzed phenomenon. This, in turn, confirms that the results achieved by 
using the load flow tool to evaluate the operation of systems is an effi-

cient operation and planning projects represent in a good way the real 
behavior of the system [13,14].

In addition, due to the high computational cost involved in imple-

menting numerical methods to solve the LFP in power distribution, 
efficient solution strategies have been promoted in the literature to 
reduce computation times [3]. The above aims to evaluate the great-
2

est number of possible scenarios as part of the efficient planning and 
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operation strategies of the power distribution system within the times 
stipulated by the different power projects.

In the specialized literature, many authors have focused their at-

tention on demonstrating the effectiveness of their strategies both in 
terms of solution quality and processing times. However, in many cases, 
they do not properly compare them with the most widely used classical 
methods or with recently reported efficient techniques [3]. Moreover, 
the studies use different test systems and computer equipment, which 
makes it difficult to determine the actual performance of the proposed 
methods. In this regard, this investigation found that no analyses for 
the selection of load flow methods have been reported in the literature. 
Such analyses should examine the convergence and computation times 
for both radial and meshed networks in order to identify the most ef-

ficient methodology for each type of topology existing within the AC 
networks.

Based on the current needs identified in state of the art, the purpose 
of this document is to evaluate the methods proposed in the specialized 
literature and, subsequently, select the most efficient one for solving the 
LFP in power distribution systems in terms of convergence and compu-

tation time both for meshed and radial networks. To this end, the most 
widely used and efficient methods reported in recent years were se-

lected. Then, radial and meshed configurations of different sizes were 
used to assess the efficiency of each method in the various topologies 
existing within the networks. Under real operation conditions, some 
electrical systems may present both meshed and radial topologies dur-

ing different operating times. This can be caused by the activation of 
protective devices trying to reconnect fractions of the system in the 
event of faults [15]. Consequently, this paper also analyzes the effect of 
the selected load flow methods on networks that can operate with both 
configurations.

The main contributions of this paper are as follows: (i) a single doc-

ument that consolidates the formulation and convergence process of the 
main methods for solving the LFP in radial and meshed networks; (ii) a 
statistical methodology to assess the efficiency of the load flow methods 
in terms of convergence and processing times; and (iii) the identifica-

tion of the most efficient LPF method for addressing radial and meshed 
distribution networks.

The rest of this paper is organized as follows. Section 2 introduces 
the mathematical formulation of the different methods selected to solve 
the LFP in radial and meshed AC networks. Section 3 describes the 
various test systems and their characteristics (i.e., line resistances, reac-

tances, and active and reactive power demanded at each node, among 
others). Section 4 reports the results of the simulations carried out by 
each solution method in each test scenario, including comparative anal-

yses. Finally, Section 5 draws the conclusions of the study and proposes 
future research lines.

2. Mathematical formulation and power flow methods

2.1. Power flow problem formulation

The LFP is a nonlinear and nonconvex problem that seeks to deter-

mine the voltages and angles of all the busbars in the system in order 
to analyze their impact on the technical and operating conditions of 
the network under a constant power scenario for a specific period of 
time (static analysis). To this end, a set of nonlinear algebraic equa-

tions should be solved, which, per node, comprise six variables: voltage 
magnitude, its respective angle, and the active and reactive power gen-

erated and demanded. Solving such equations allows us to determine 
active and reactive power losses, voltage regulation in the system, static 
voltage stability characteristics, reactive compensation, and power flow 
through the lines, among other elements [16].

𝕊∗
𝑖
= 𝕍 ∗

𝑖

𝑛∑
𝕐𝑖𝑗𝕍𝑗 (1)
𝑗=1
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Eq. (1) shows the overall power balance in an electrical system. It 
is used to represent the LFP, where (𝕊∗

𝑖
) is the conjugate of the net 

power injected at node 𝑖, (𝕐𝑖𝑗) is the admittance matrix that describes 
the connections of nodes i and j, (𝕍 ∗

𝑖
) is the conjugate of the voltage at 

node 𝑖, (𝕍𝑗 ) is the voltage at node 𝑗, and 𝑛 is the number of nodes in 
the system. This equation can also be expressed as shown in Eq. (2). In 
this case, (𝕊∗

𝑔
) is the conjugate of the generated power and (𝕊∗

𝑑
) is the 

conjugate of the demanded power.

𝕊∗
𝑖
= 𝕊∗

𝑔
− 𝕊∗

𝑑
= 𝑑𝑖𝑎𝑔

(
𝕍 ∗)𝕐𝑏𝑢𝑠𝕍 (2)

The nodal voltages of the system are the variables to be found by 
solving the above nonlinear equation. Additionally, the LFP identifies 
the active and reactive powers to be injected by the slack generator. It 
is worth mentioning that this study focuses on power distribution net-

works; it does not consider PV nodes or their variables. Furthermore, 
due to the nonlinearities of this equation, it cannot be solved analyti-

cally and requires the application of numerical methods.

2.2. Power flow methods

In the literature, we can find multiple numerical methods to solve 
the LFP, which can be classified into two groups: derivative-based meth-

ods and derivative-free methods [17]. This study selected two classic 
methods (NR and GS) and four modern methods (SA, IS, TM, and TS, 
published over the last three years) in order to validate their efficiency 
in solving the LFP in radial and/or meshed networks. This selection was 
based on the wide implementation of these methodologies in the litera-

ture (in the case of the classical methods) and on the excellent results in 
terms of convergence and processing times reported by the researchers.

The mathematical formulations of each selected method are pre-

sented below. However, we also recommend reviewing the references 
provided in each case for a better understanding.

2.2.1. Newton–Raphson (NR)

The formulation of this classical solution method is based on the 
Jacobian matrix (𝐽 ), which provides a linear relationship between the 
small changes in voltage angle (𝛿) and magnitude (𝕍 ) and the small 
variations in active (Δ𝑃𝑖) and reactive (Δ𝑄𝑖) power [9].

To obtain the recursive formula of the NR method, an iteration 
counter (𝑡) is added. Said formula can be observed in Eq. (3). This equa-

tion starts with typical plane voltages (nodal voltages to 1∠0 in p.u) 
and iterates until converging to a convergence error set for the prob-

lem. This applies to all the methods that employ iterative processes to 
solve the LFP, which is the case of all the methods used in this paper.[
Δ𝑃 𝑡

𝑖

Δ𝑄𝑡
𝑖

]
= [𝐽 ]

[
𝛿𝑡+1
𝑖

− 𝛿𝑡
𝑖

𝕍 𝑡+1
𝑖

− 𝕍 𝑡
𝑖

]
. (3)

2.2.2. Gauss–Seidel (GS)

It is a classical load flow method that reorganizes Eq. (1) in terms 
of 𝕍𝑖, using the mathematical basis of the Gauss-Seidel methodology 
to solve the LFP. The result of this reorganization is shown in Eq. (4), 
where an iteration counter (t) is also added to make the recursive equa-

tion [9], [18].

𝕍 𝑡+1
𝑖

= 1
𝕐𝑖𝑖

(
𝑃𝑖 − 𝑗𝑄𝑖

𝕍 𝑡,∗
𝑖

−
𝑛∑
𝑗<𝑖

𝕐𝑖𝑗𝕍 𝑡+1
𝑗

−
𝑛∑
𝑗>𝑖

𝕐𝑖𝑗𝕍 𝑡
𝑗

)
. (4)

This method updates the nodal voltages in an ordered way by us-

ing, in every nodal voltage, all the previous updated voltages, which 
improves its efficiency in terms of convergence and processing times 
when compared to the Gauss method. [16].

2.2.3. Successive approximations (SA)

It is an open numerical method employed to solve the LFP, which 
seeks to find the roots of an equation. It does not require an interval 
3

that brackets a root but a starting value close to it. A derivative-free 
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formulation is implemented to carry out the iterative process and find 
its solution (where the solution time is proportional to the proximity 
between the starting and root values). Given that it does not require the 
inverse of nondiagonal matrices for each iteration, it helps reduce the 
computation time.

𝕍 𝑡+1
𝑑

= −ℤ𝑑𝑑 [𝕐𝑑𝑠𝕍𝑠 + 𝑑𝑖𝑎𝑔−1(𝕍 𝑡,∗
𝑑

)𝕊∗
𝑑
]. (5)

Eq. (5) describes the iterative process of the SA method, which seeks 
to find the complex conjugate voltage at the demand nodes (𝕍𝑑 ). How-

ever, this process requires the addition of an iteration counter (t) to 
obtain these values, taking as a starting point a value that is usually 
the slack node voltage (𝕍𝑠). The minus sign (-) refers to the power out-

put of the distribution system. In this equation, (ℤ𝑑𝑑 ) represents the 
inverse of the admittance matrix, also known as the impedance matrix. 
Said inversion is done to avoid calculating the inverse iteratively. Al-

though some subcomponents of the admittance matrix are still required 
and are represented by (𝕐𝑑𝑠), they only consider the interconnection be-

tween the slack node and the demand nodes. Lastly, this equation also 
takes into account the complex conjugate power demanded from the 
demand nodes (𝕊∗

𝑑
).

2.2.4. Iterative sweep (IS)

Also known as the backward/forward method, it has a derivative-

free formulation that employs an iterative counter (t) very similar to 
the one described in the SA method. However, in this case, differentiat-

ing between the nodal (𝕍𝑛) and branch (𝕍𝑟) voltages in the distribution 
system under study is fundamental. Moreover, the directions of the cur-

rents flowing through the lines must be assumed, and their effects are 
represented by an incidence matrix of the node–branch type (𝐴). This 
shows that the branch voltages are equal to the transpose of the inci-

dence matrix times the nodal voltages. However, this incidence matrix 
is, in turn, divided into two parts, slack node (𝐴𝑠) and demand nodes 
(𝐴𝑑 ), so that the resulting iterative equation can be expressed in terms 
of (𝕍𝑑 ). Finally, considering that the currents demanded at the nodes 
(𝕀𝑑 ) are equal to the product of (𝐴𝑑 ) times the branch currents (𝕀𝑟), and 
applying Ohm’s law to the branches, it is possible to obtain the branch 
impedances (ℤ𝑟) presented in Eq. (6). This equation describes the iter-

ative process of the iterative sweep method.

𝕍 𝑡+1
𝑑

= −
(
𝐴𝑑ℤ−1

𝑟
𝐴𝑇
𝑑

)−1 [
𝑑𝑖𝑎𝑔−1

(
𝕍 𝑡,∗
𝑑

)
𝕊∗
𝑑
+𝐴𝑑ℤ−1

𝑟
𝐴𝑇
𝑠
𝕍𝑠
]
. (6)

2.2.5. Triangular method (TM)

The original formulation of this method only allows for solving 
the power flow in radial distribution systems [19,20]. However, with 
the modifications proposed by [21,22], it is possible to analyze radial 
and meshed topologies. This method has many similarities with the IS 
method, as it involves a derivative-free formulation, requires differenti-

ating between the branch and nodal voltages, and needs an additional 
matrix to be solved. The IS method uses the incidence matrix, while 
the TM requires a triangular matrix (T) that represents the nodal cur-

rents transported by the currents of each of the branches. This matrix 
is so named because of its shape, as all of its components are located at 
the top of the diagonal of the matrix. The iterative process of the TM 
is represented by Equation (7). In addition, it offers reduced computa-

tion times because (𝑇 𝑇ℤ𝑟𝑇 ) is calculated only once and not at every 
iteration.

𝕍 𝑡+1
𝑑

= 𝕍𝑠 + 𝑇 𝑇ℤ𝑟𝑇 𝑑𝑖𝑎𝑔
−1 (𝕍 𝑡,∗

𝑑

)
𝕊∗
𝑑
. (7)

Remark. The upper-triangular power flow method can be applied to 
meshed distribution networks with only one slack bus by using a loop-

based analysis approach, as presented by the authors of [22]. The work 
by [21] presents complete details regarding the reformulation of Equa-

tion (7) in order to make it compatible with meshed distribution net-
works.
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2.2.6. Taylor’s series (TS)

This load flow method linearizes the hyperbolic relation between 
voltages and powers by using the complex Taylor series expansion 
[17],[23]. Eq. (8) is the recursive formula that represents the TS method 
[17],[23], where the subscripts ℜ and ℑ refer to the real and imaginary 
part, respectively.[
𝑉 𝑡+1
ℜ

𝑉 𝑡+1
ℑ

]
=

[
𝐴𝑡

ℜ +𝐵𝑡

ℜ 𝐴𝑡

ℑ −𝐵𝑡

ℑ
𝐴𝑡

ℑ +𝐵𝑡

ℑ 𝐵𝑡

ℜ −𝐴𝑡

ℜ

]−1 [
𝐶𝑡

ℜ
𝐶𝑡

ℑ

]
. (8)

Eq. (9) shows the equivalences of the complex square matrices of A 
and B, as well as of the complex vector of C [23].

𝐴 = 𝑑𝑖𝑎𝑔−2(𝕍 0,∗
𝑑

)𝑑𝑖𝑎𝑔(𝕊∗
𝑑
),

𝐵 = −𝕐𝑑𝑑 ,
𝐶 = −(2𝑑𝑖𝑎𝑔−1(𝕍 0,∗

𝑑
)𝑑𝑖𝑎𝑔(𝕊∗

𝑑
) + 𝕐𝑑𝑠𝕍𝑠).

(9)

Finally, the iterative process to be performed to solve the LFP us-

ing the methods previously described is represented by the following 
algorithm:

Data: Load the radial or meshed system data;

Load the vectors and matrices that make up each algorithm;

Load the 𝑣0 , 𝑣𝑡𝑑 (with 𝑡 = 0), 𝜖, and 𝑡𝑚𝑎𝑥 data;

for 𝑡 = 0 ∶ 𝑡𝑚𝑎𝑥 do

Evaluate the proposed iterative equation for each method;

if 𝑚𝑎𝑥 
(|||𝑣𝑡+1𝑑

− 𝑣𝑡
𝑑

|||) ≤ 𝜖 then

Solution achieved;

Result: Return 𝑣𝑑 = 𝑣𝑡+1
𝑑

.

break;

else

𝑣𝑡+1
𝑑

= 𝑣𝑡
𝑑
;

end

end

Algorithm 1: Proposed iterative algorithm for evaluating each of the 
solution methods.

Algorithm 1 outlines the iterative solution strategy implemented 
with each solution algorithm. Initially, the (radial or meshed) system 
data are loaded. Then, the vectors and matrices (necessary to calculate 
the voltages using the different algorithms selected) are loaded. These 
data are clearly detailed within each of the source documents of the 
algorithms. Subsequently, the initial data of the problem are loaded: 
initial nodal voltages 𝑣0, demand voltages at iteration t (𝑣𝑡

𝑑
with 𝑡 = 0), 

selected convergence error 𝜖, and the maximum number of iterations 
of the iterative algorithm 𝑡𝑚𝑎𝑥. After loading these data, the iterative 
process starts and, iteration by iteration assesses the load flow function 
proposed for each solution method, as well as the convergence of the 
algorithm. When the expected convergence level is reached, the algo-

rithm stops and returns the nodal voltage data of the analyzed system, 
thus ending the iterative process. If the level is not reached, the voltages 
at the demand nodes are updated, and the iterative process continues 
until achieving the maximum number of iterations.

3. Test systems and considerations

This section presents the test systems used and the considerations 
taken into account for the analyses made in this study.

3.1. 10-node test system

This section describes the electrical configuration and the main pa-

rameters of the radial and meshed 10-node systems. The radial version 
of this system consists of 10 nodes and 9 lines, with base voltage and 
power of 23 kV and 100 kW, respectively. The electrical configuration 
of the system is illustrated in Fig. 1.

Table 1 summarizes the main parameters for simulation and vali-

dation. It includes, from left to right, the sending node, the receiving 
4

node, the interconnection resistance between the sending and receiving 
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slack (𝑣)

Gen
1 2 3

6

4

10

7

5

8

9

Fig. 1. 10-node radial topology.

Table 1

Electrical parameters of the 10-node radial topology.

Node i Node j 𝑅𝑖𝑗[Ω] 𝑋𝑖𝑗[Ω] 𝑃𝑗 [𝑘𝑤] 𝑄𝑗 [𝑘𝑉 𝑎𝑟]

1 2 0.1233 0.4127 1840 460

2 3 0.2467 0.6051 980 340

2 4 0.7469 1.2050 1790 446

4 5 0.6984 0.6084 1598 1840

2 6 1.9837 1.7276 1610 600

6 7 0.9057 0.7886 780 110

7 8 2.0552 1.1640 1150 60

7 9 4.7953 2.7160 980 130

3 10 5.3434 3.0264 1640 200

Table 2

Electrical parameters added to obtain the 10-node meshed 
topology.

Node i Node j 𝑅𝑖𝑗[Ω] 𝑋𝑖𝑗[Ω] 𝑃𝑗 [𝑘𝑤] 𝑄𝑗 [𝑘𝑉 𝑎𝑟]

5 10 0.1426 0.4522 1640 200

8 10 0.2018 0.5214 1640 200

slack (𝑣)

Gen
1 2 3

6

4

10

7

5

8

9

Fig. 2. 10-node meshed topology.

nodes (𝑅𝑖𝑗[Ω]), the reactance associated with it, (𝑋𝑖𝑗[Ω]), and the ac-

tive (kW) and reactive (kVar) power demanded at each of the receiving 
nodes. This test system was adapted from Grisales-Noreña et al. [24], 
and Garces [25]. In this study, all the tables that describe the parame-

ters of the meshed and radial versions follow the same format described 
above.

To obtain the 10-node meshed system, two connection lines were 
added to the 10-node radial topology described above, which are shown 
in blue in Fig. 2. This test system was taken from Grisales-Noreña et al. 
[24], Garces [25], Ocampo Toro [26], and Montoya et al. [27]. Given 
the simplicity of the conversion from radial to meshed, Table 2 only 
contains the information on the two lines added to the system. This 
procedure followed the recommendation by Ocampo Toro [26] and was 
also employed to obtain the meshed versions of the 33- and 69-node 
systems.

The meshed version of this system consists of 10 nodes and 11 lines, 
with base voltage and power of 1 kV and 100 kW.

3.2. 33-node test system

The radial version of this test system consists of 33 nodes and 32 
lines. Its base voltage is 12.66 kV and its base power is 1000 kVA. 
Fig. 3 shows the electrical diagram of the system, and Table 3 lists its 
characteristics. The radial version of the 33-node system was adapted 
from Montoya et al. [27], [28].

To develop the meshed version of the 33-node system, three connec-

tion lines were added to the 33-node radial topology described above. 
Table 4 presents the information corresponding to the lines added to 

obtain the meshed system.
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Fig. 3. 33-node radial topology.

Table 3

Electrical parameters of the 33-node radial topology.

Node i Node j 𝑅𝑖𝑗[Ω] 𝑋𝑖𝑗[Ω] 𝑃𝑗 [𝑘𝑤] 𝑄𝑗 [𝑘𝑉 𝑎𝑟]

1 2 0.0922 0.0477 100 60

2 3 0.4930 0.2511 90 40

3 4 0.3660 0.1864 120 80

4 5 0.3811 0.1941 60 30

5 6 0.8190 0.7070 60 20

6 7 0.1872 0.6188 200 100

7 8 1.7114 1.2351 200 100

8 9 1.0300 0.7400 60 20

9 10 1.0400 0.7400 60 20

10 11 0.1966 0.0650 45 30

11 12 0.3744 0.1238 60 35

12 13 1.4680 1.1550 60 35

13 14 0.5416 0.7129 120 80

14 15 0.5910 0.5260 60 10

15 16 0.7463 0.5450 60 20

16 17 1.2890 1.7210 60 20

17 18 0.7320 0.5740 90 40

2 19 0.1640 0.1565 90 40

19 20 1.5042 1.3554 90 40

20 21 0.4095 0.4784 90 40

21 22 0.7089 0.9373 90 40

3 23 0.4512 0.3083 90 50

23 24 0.8980 0.7091 420 200

24 25 0.8960 0.7011 420 200

6 26 0.2030 0.1034 60 25

26 27 0.2842 0.1447 60 25

27 28 1.0590 0.9337 60 20

28 29 0.8042 0.7006 120 70

29 30 0.5075 0.2585 200 600

30 31 0.9744 0.9630 150 70

31 32 0.3105 0.3619 210 100

32 33 0.3410 0.5302 60 40

Table 4

Electrical parameters added to obtain the 33-node meshed 
topology.

Node i Node j 𝑅𝑖𝑗[Ω] 𝑋𝑖𝑗[Ω] 𝑃𝑗 [𝑘𝑤] 𝑄𝑗 [𝑘𝑉 𝑎𝑟]

5 22 1.4680 1.1550 90 40

18 25 0.5910 0.5260 420 200

13 33 1.5042 1.3554 60 40

The meshed version of the system consists of 33 nodes and 35 lines, 
and its base voltage and power are 12.66 kV and 1000 kVA, respec-

tively. Fig. 4 presents the electrical diagram of the system, where the 
added lines are shown in blue. This test system was adapted from Mon-

toya et al. [27], [28] and Kumar Sharma and Murty [29].

3.3. 69-node test system

The radial version of this test system consists of 69 nodes and 68 
lines, its base voltage is 12.66 kV, and its base power is 1000 kVA. 
Fig. 5 presents the electrical configuration of the system, and Table 5

lists its technical parameters. This version of the 69-node test system 
was adapted from Montoya et al. [27], [28].

To develop the meshed topology, four connection lines were added 
5

to the 69-node radial system described above. Table 6 presents the 
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Fig. 4. 33-node meshed topology.
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Fig. 5. 69-node radial topology.
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Fig. 6. 69-node meshed topology.

technical data corresponding to the lines added to obtain the meshed 
version of the system.

This meshed version consists of 69 nodes and 72 lines, its base volt-

age is 12.66 kV, and its base power is 1000 kVa. Fig. 6 presents the 
diagram of the system, where the new lines are shown in blue. This test 
system was proposed by Montoya et al. [27], [28] and Grisales-Noreña 
et al. [30].

3.4. Considerations

The following are the considerations that we took into account in 
this study for the comparative analysis of the selected solution methods:

• To analyze the convergence errors in terms of nodal voltages and 
power losses, we compared the average voltage errors obtained by 
each method with the values obtained by the NR method. NR was 
employed as the comparison method because, in the specialized 
literature, it has proven to converge to the solution of the LFP 
[3]. Therefore, it is used in the main simulation software pack-

ages, such as DIgSILENT, to validate load flows [31,32]. It is worth 
highlighting that, in this study, we obtained the voltage conver-

gences of the solution methods by analyzing their average voltage 
errors with respect to those reported in the base case (NR), due 
to the space limitations of the paper. Regarding the power losses 
of each method, we analyzed the difference between the data ob-

tained by the NR and the selected load flow methods in both radial 
and meshed topologies.

• As for the analysis of processing times, we collected the time ob-

tained by each method and then we analyzed the time reduction 

percentage with respect to the NR method.
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Table 5

Electrical parameters of the 69-node test system.

Node 𝑖 Node 𝑗 𝑅𝑖𝑗[Ω] 𝑋𝑖𝑗[Ω] P[kW] Q[kVar] Node 𝑖 Node 𝑗 𝑅𝑖𝑗[Ω] 𝑋𝑖𝑗[Ω] P[kW] Q[kVar]

1 2 0.0005 0.0012 0 0 3 36 0.0044 0.0108 26 18.55

2 3 0.0005 0.0012 0 0 36 37 0.0640 0.1565 26 18.55

3 4 0.0015 0.0036 0 0 37 38 0.1053 0.1230 0 0

4 5 0.0215 0.0294 0 0 38 39 0.0304 0.0355 24 17

5 6 0.3660 0.1864 2.6 2.2 39 40 0.0018 0.0021 24 17

6 7 0.3810 0.1941 40.4 30 40 41 0.7283 0.8509 102 1

7 8 0.0922 0.0470 75 54 41 42 0.3100 0.3623 0 0

8 9 0.0493 0.0251 30 22 42 43 0.0410 0.0478 6 4.3

9 10 0.8190 0.2707 28 19 43 44 0.0092 0.0116 0 0

10 11 0.1872 0.0619 145 104 44 45 0.1089 0.1373 39.22 26.3

11 12 0.7114 0.2351 145 104 45 46 0.0009 0.0012 39.22 26.3

12 13 1.0300 0.3400 8 5 4 47 0.0034 0.0084 0 0

13 14 1.0440 0.3400 8 5 47 48 0.0851 0.2083 79 56.4

14 15 1.0580 0.3496 0 0 48 49 0.2898 0.7091 384.7 274.5

15 16 0.1966 0.0650 45 30 49 50 0.0822 0.2011 384.7 274.5

16 17 0.3744 0.1238 60 35 8 51 0.0928 0.0473 40.5 28.3

17 18 0.0047 0.0016 60 35 51 52 0.3319 0.1140 3.6 2.7

18 19 0.3276 0.1083 0 0 9 53 0.1740 0.0886 4.35 3.5

19 20 0.2106 0.0690 1 0.6 53 54 0.2030 0.1034 26.4 19

20 21 0.3416 0.1129 114 81 54 55 0.2842 0.1447 24 17.2

21 22 0.0140 0.0046 5 3.5 55 56 0.2813 0.1433 0 0

22 23 0.1591 0.0526 0 0 56 57 1.5900 0.5337 0 0

23 24 0.3463 0.1145 28 20 57 58 0.7837 0.2630 0 0

24 25 0.7488 0.2475 0 0 58 59 0.3042 0.1006 100 72

25 26 0.3089 0.1021 14 10 59 60 0.3861 0.1172 0 0

26 27 0.1732 0.0572 14 10 60 61 0.5075 0.2585 1244 888

3 28 0.0044 0.0108 26 18.6 61 62 0.0974 0.0496 32 23

28 29 0.0640 0.1565 26 18.6 62 63 0.1450 0.0738 0 0

29 30 0.3978 0.1315 0 0 63 64 0.7105 0.3619 227 162

30 31 0.0702 0.0232 0 0 64 65 1.0410 0.5302 59 42

31 32 0.3510 0.1160 0 0 65 66 0.2012 0.0611 18 13

32 33 0.8390 0.2816 10 10 66 67 0.0047 0.0014 18 13

33 34 1.7080 0.5646 14 14 67 68 0.7394 0.2444 28 20

34 35 1.4740 0.4873 4 4 68 69 0.0047 0.0016 28 20
Table 6

Electrical parameters added to obtain the 69-node meshed 
topology.

Node i Node j 𝑅𝑖𝑗[Ω] 𝑋𝑖𝑗[Ω] 𝑃𝑗 [𝑘𝑤] 𝑄𝑗 [𝑘𝑉 𝑎𝑟]

35 52 0.0022 0.0007 3.6 2.7

50 53 0.0057 0.0103 4.35 3.5

46 60 0.0275 0.0055 0 0

27 65 0.0025 0.1693 59 42

• The method with the lowest level of convergence errors and short-

est processing time in both meshed and radial networks was se-

lected as the most suitable method to solve the LFP.

• All the solution methods were assigned a convergence error (𝜖) of 
1 × 1−10, which was employed as the stopping criterion.

• To reduce the effect of other computational processes or inter-

ference in the processing times, the different test scenarios were 
executed 1 × 15 to identify the average processing time of each 
method [30].

• In order to ensure the proper comparison of the results, we con-

ducted all the simulations on a Lenovo IdeaPad Gaming 3i laptop, 
with a 10th generation Intel Core i5-10300H processor, and a 12-

GB RAM. In addition, we used MATLAB software to implement the 
load flow methods.

4. Simulation results

This section describes the simulation results of all the test systems 
employed in this study. The radial and meshed configurations were 
analyzed separately in order to identify the solution method with the 
best balance between convergence and processing time for the different 
6

topologies of the electrical systems selected.
4.1. Analysis of convergence and processing times in radial networks

We assessed the efficiency of the NR, GS, TS, SA, IS, and TM methods 
to solve the LFP in radial networks. To this end, we collected the power 
loss levels and processing times, which are detailed in Table 7. This 
table is divided into three columns that contain, from left to right, the 
solution method, the power losses of each method (in p.u), and the 
processing times required by each method. The table also comprises 
three subsections, which represent the three test scenarios (10, 33, and 
69 nodes).

Table 8 lists the average voltage errors, the percentage power loss 
errors, and the time reductions obtained by each solution method in 
the radial systems, compared to the NR methodology. As for the nodal 
voltage errors, the table does not display the errors obtained by each of 
the nodes, but the average voltage error of the test system, considering 
the space limitations of this document and the extension of the data. 
Note that, in some cases, the time reduction values are negative; this is 
because the time did not decrease but increased when compared to the 
NR method.

According to Table 8, the highest value among the average volt-

age errors was obtained in the 69-node scenario, using the TS method 
(8.017×10−04). However, it is an irrelevant error in terms of voltage, 
considering that, if we were working with kilovolts, this error would 
be in the volt range. Regarding the power losses in radial test systems, 
the scenario is similar. The largest error is found in the 69-node system 
using the GS method (5.613×10−07). However, if the system were oper-

ating on the order of megawatts, this error would mean a difference of 
0.1 watts, which is negligible due to the major difference between the 
errors and the working scales. Based on these results, we can conclude 
that all the numerical methods used in this study to solve the LFP in 
radial AC networks are suitable in terms of convergence.

With respect to the computation times, the GS method clearly dis-
plays the least favorable results, considering that it increases the time 
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Table 7

Power losses and processing times in radial net-

works.

Method
Power

loss (p.u)

Processing

time

10-node radial topology

NR 2.23418140617546 0.350383

GS 2.23418140806228 0.889808

TS 2.23418140696487 0.135645

SA 2.23418140694496 0.084450

IS 2.23418140694527 0.108409

TM 2.23418140651530 0.035618

33-node radial topology

NR 0.210978503766554 2.721391

GS 0.210978503038590 21.980785

TS 0.210978503766739 0.967009

SA 0.210978503761836 0.409485

IS 0.210978503761475 0.577689

TM 0.210978503707882 0.079691

69-node radial topology

NR 0.225071470886112 9.404351

GS 0.225070909569565 136.555441

TS 0.225071470876815 2.989799

SA 0.225071470859690 1.940855

IS 0.225071470868345 2.352327

TM 0.225071470717744 0.185596

Table 8

Analysis of the different solution methods with respect 
to the NR method in the study of radial networks.

Method
Voltage

error (p.u)

Loss

error (p.u)

Time

reduction (s)

10-node radial topology

GS 1.674×10−10 1.887×10−09 -0.539

TS 4.144×10−12 7.894×10−10 0.215

SA 4.040×10−12 7.695×10−10 0.266

IS 4.041×10−12 7.698×10−10 0.242

TM 1.056×10−12 3.397×10−10 0.315

33-node radial topology

GS 1.675×10−05 7.280×10−10 -19.259

TS 1.496×10−14 1.850×10−13 1.754

SA 6.722×10−13 4.718×10−12 2.312

IS 6.685×10−13 5.079×10−12 2.144

TM 8.082×10−12 5.867×10−11 2.642

69-node radial topology

GS 2.896×10−05 5.613×10−07 -127.151

TS 8.017×10−04 9.297×10−12 6.415

SA 1.836×10−09 2.642×10−11 7.463

IS 1.836×10−09 1.777×10−11 7.052

TM 1.824×10−09 1.684×10−10 9.219

by -737.90%, compared to the NR method. As for the rest of the meth-

ods, we can observe reductions in the time required to solve the LFP, 
when compared to the NR method. The greatest reductions in process-

ing times were achieved by the TM, followed by SA, IS, and TS in the 
last place. The results suggest that, as the number of nodes increases, 
the difference obtained by the methods in terms of processing times 
also grows. For example, if we analyze the performance of the TM, it 
achieved time reductions of 89.83% in the 10-node topology, 97.07% 
in the 33-node topology, and 98.03% in the 69-node topology, when 
compared with the NR method. Furthermore, when compared with the 
other methods, the TM obtained an average reduction of 76.91% in the 
10-node system, 91.04% in the 33-node system, and 94.85% in the 69-

node system. It means that its overall average improvement is 87.60% 
with respect to the processing times obtained by the other methods. 
7

Consequently, the TM is considered to be the most efficient method in 
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Table 9

Power losses and processing times in meshed 
networks.

Method
Power

loss (p.u)

Processing

time (s)

10-node meshed topology

NR 1.90323657874833 0.356536

GS 1.90323657940136 1.453290

TS 1.90323657887076 0.123754

SA 1.90323657878735 0.076213

IS 1.90323657878838 0.156125

TM 1.90323657557859 0.047279

33-node meshed topology

NR 0.159285326588047 2.737034

GS 0.159285326672570 35.33883

TS 0.159285326587817 0.965361

SA 0.159285326569052 0.327071

IS 0.159285326568758 1.138940

TM 0.159285326232904 0.152359

69-node meshed topology

NR 0.0794264098676387 9.468824

GS 0.0794258034455151 780.4313

TS 0.0794264098279257 2.366148

SA 0.0794264098899297 1.441815

IS 0.0794264098677721 4.120223

TM 0.0794264097716617 0.464808

Table 10

Analysis of the different solution methods with respect 
to the NR method in the study of meshed networks.

Method
Voltage

error (p.u)

Loss

error (p.u)

Time

reduction (s)

10-node meshed topology

GS 6.431×10−10 6.530×10−10 -1.097

TS 6.529×10−13 1.224×10−10 0.233

SA 7.431×10−14 3.902×10−11 0.357

IS 7.431×10−14 4.005×10−11 0.200

TM 1.567×10−11 3.170×10−09 0.309

33-node meshed topology

GS 1.702×10−06 8.452×10−11 -32.602

TS 5.090×10−15 2.300×10−13 1.772

SA 2.377×10−12 1.900×10−11 2.410

IS 2.373×10−12 1.929×10−11 1.598

TM 4.444×10−11 3.551×10−10 2.585

69-node meshed topology

GS 1.488×10−06 6.064×10−07 -770.962

TS 3.963×10−04 3.971×10−11 7.103

SA 1.309×10−08 2.229×10−11 8.027

IS 1.309×10−08 1.334×10−13 5.349

TM 3.963×10−04 9.598×10−11 9.004

terms of processing time when analyzing different sizes of radial AC 
networks.

4.2. Analysis of convergence and processing times in meshed networks

In this section, to assess the efficiency of the solution in meshed net-

works, we considered the same methods as in Section 4.1. The results of 
the performance analysis of these methods are summarized in Table 9, 
which presents the same structure as Table 7.

In order to use the same structure in the different analyses described 
throughout the document and present the information homogeneously, 
Table 10 lists the performance of the solution methods in the same way 
as Table 8. In this case, the NR method is also used as the comparison 

method.
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According to the average voltage errors shown in Table 8, the high-

est error is found in the 69-node topology when using the TS method 
(3.963×10−04). Regarding power losses, the largest error is found in the 
69-node system when the GS method is employed (6.064×10−07). Based 
on the previous results, we can infer that, like in radial networks, all 
the methods studied are suitable in terms of convergence to solve the 
LFP in meshed AC networks.

In terms of computation times, we can clearly observe that, again, 
the GS method presents the least favorable results. When compared to 
the NR method, it increases the processing time by -3213.62%, unlike 
the rest of the methods that reduce it. The TM method offers the great-

est reductions in processing times, followed by SA, TS, IS, and GS in 
comparison with the NR methodology. Specifically, it reduced the pro-

cessing time by 86.74% in the 10-node topology, by 94.43% in the 
33-node topology, and by 95.09% in the 69-node topology. Addition-

ally, when compared to the other methods, TM achieved an average 
reduction of 70.59% in the 10-node system, 83.65% in the 33-node 
system, and 86.37% in the 69-node system. It also exhibited an over-

all average improvement of 80.21% with respect to the other solution 
methods. This demonstrates that, in terms of processing times, TM is 
the most efficient method to solve the LFP in meshed AC networks.

4.3. Analysis of the load flow methods in radial and meshed networks

This section only analyzes the processing times because, as ex-

plained above, the convergence errors in both radial and meshed net-

works are not significant enough to be considered as a selection crite-

rion. Therefore, in terms of convergence, all the methods under study 
are suitable for solving the LFP in radial and meshed AC networks. In 
contrast, the processing times of the different methods do differ sub-

stantially, which makes it a crucial criterion when selecting a method 
to solve the LFP. The best method in terms of processing times was TM, 
which, in comparison with the other methods, reached overall average 
reductions of 87.60% and 80.21% for the radial and meshed networks, 
respectively. It is worth mentioning that the topology of a network can 
change under real operating conditions due to the activation of discon-

nectors or protective devices entrusted with recovering electrical zones 
under faults. Therefore, it is essential to identify a method that can solve 
the LFP in both meshed and radial networks while ensuring short pro-

cessing times. Based on these conditions and given its short processing 
times, this study concludes that TM is the method of choice.

5. Conclusions

As explained in previous sections, the LFP in AC networks is a non-

linear and non-convex problem that must be solved using numerical 
methods. Although this problem is not new, a literature review allowed 
us to determine that it still prevails due to the need to optimize the man-

agement and planning of electrical networks to ensure short response 
times, thus minimizing the environmental impacts and operating costs 
of the existing electrical systems.

From this study, we concluded that all the methods selected to solve 
the LFP in AC networks offer excellent results in terms of convergence, 
considering that the greatest errors were 6.064×10−07 for power losses 
and 8.017×10−04 for nodal voltages, which are negligible values for 
practical purposes. Therefore, the key factor when selecting a solution 
method for the LFP is the processing time since an unsuitable method 
can imply processing times up to 541.283 times longer.

Based on the results obtained in this research, it is recommended 
that the TM method be used when solving the LFP problem, as it exhib-

ited overall average processing time reductions of 87.60% and 80.21% 
in radial and meshed networks, respectively, i.e., in comparison with 
the other solution methods analyzed. Its efficiency is such that the next 
most efficient method (SA) is 498.89% slower on average at solving ra-
8

dial networks. Thereupon, TM is the best method for solving the LPF 
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in both topologies, which is fundamental in the management and plan-

ning of electrical networks, as it is common for networks to change their 
topology during operation due to protector and disconnector devices.

Future lines of research might include the analysis and implemen-

tation of new numerical methods to solve the LFP in electrical systems 
to ensure convergence and improve the computation times reported in 
the specialized literature. Another possible application of the results ob-

tained in this paper is to propose strategies to plan and operate power 
systems using the load flow methods selected here for the different 
topologies. This would allow researchers to explore solution spaces in a 
suitable way, with short processing times.
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