Mostrar el registro sencillo del ítem
An Efficient EMS for BESS in Monopolar DC Networks with High Penetration of Renewable Generation: A Convex Approximation
dc.contributor.author | Grisales-Noreña, Luis Fernando | |
dc.contributor.author | Montoya, Oscar Danilo | |
dc.contributor.author | Hernández, Jesus C. | |
dc.date.accessioned | 2023-05-08T13:28:41Z | |
dc.date.available | 2023-05-08T13:28:41Z | |
dc.date.issued | 2023-01-26 | |
dc.date.submitted | 2023-05-05 | |
dc.identifier.citation | Grisales-Noreña, L.F.; Montoya, O.D.; Hernández, J.C. An Efficient EMS for BESS in Monopolar DC Networks with High Penetration of Renewable Generation: A Convex Approximation. Batteries 2023, 9, 84. https://doi.org/10.3390/batteries9020084 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/11844 | |
dc.description.abstract | This research presents an efficient energy management system (EMS) for battery energy storage systems (BESS) connected to monopolar DC distribution networks which considers a high penetration of photovoltaic generation. The optimization model that expresses the EMS system with the BESS and renewable generation can be classified as a nonlinear programming (NLP) model. This study reformulates the NLP model as a recursive convex approximation (RCA) model. The proposed RCA model is developed by applying a linear approximation for the voltage magnitudes only at nodes that include constant power loads. The nodes with BESS and renewables are approximated through the relaxation of their voltage magnitude. Numerical results obtained in the monopolar version of a 33-bus system, which included three generators and three BESS, demonstrate the effectiveness of the RCA reformulation when compared to the solution of the exact NLP model via combinatorial optimization techniques. Additional simulations considering wind power and diesel generators allow one to verify the effectiveness of the proposed RCA in dealing with the efficient operation of distributed energy resources in monopolar DC networks via recursive convex programming. | spa |
dc.format.extent | 18 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Batteries - Vol 9 No. 2 (2023) | spa |
dc.title | An Efficient EMS for BESS in Monopolar DC Networks with High Penetration of Renewable Generation: A Convex Approximation | spa |
dcterms.bibliographicCitation | Khairnar, S.K.; Hadpe, S.S.; Shriwastava, R.G.; Khule, S.S. Fault detection and diagnosis of monopolar configured VSC based high voltage direct current transmission line. Glob. Transit. Proc. 2022, 3, 43–54. | spa |
dcterms.bibliographicCitation | Yang, X.; Xiao, F. Research on Voltage Control of Multi Terminal Flexible Medium Voltage DC Distribution Network. J. Phys. Conf. Ser. 2020, 1639, 012052. | spa |
dcterms.bibliographicCitation | Freire, P.; Kalife, J.; Oliveira, G. Rio Madeira HVDC System: Commissioning of the Ground Electrode for Bipole 2 at Porto Velho. Appl. Sci. 2022, 12, 3279. | spa |
dcterms.bibliographicCitation | Wu, J.; Li, Q.; Chen, Q.; Peng, G.; Wang, J.; Fu, Q.; Yang, B. Evaluation, Analysis and Diagnosis for HVDC Transmission System Faults via Knowledge Graph under New Energy Systems Construction: A Critical Review. Energies 2022, 15, 8031 | spa |
dcterms.bibliographicCitation | Fan, Y.; Chi, Y.; Li, Y.; Wang, Z.; Liu, H.; Liu, W.; Li, X. Key technologies for medium and low voltage DC distribution system. Glob. Energy Interconnect. 2021, 4, 91–103. | spa |
dcterms.bibliographicCitation | Zhang, L.Z.L.; Tang, W.T.W.; Liang, J.L.J.; Li, G.L.G.; Cai, Y.C.Y.; Yan, T.Y.T. A medium voltage hybrid AC/DC distribution network and its economic evaluation. In Proceedings of the 12th IET International Conference on AC and DC Power Transmission (ACDC 2016), Beijing, China, 28–29 May 2016; Institution of Engineering and Technology: London, UK, 2016 | spa |
dcterms.bibliographicCitation | Garces, A. Uniqueness of the power flow solutions in low voltage direct current grids. Electr. Power Syst. Res. 2017, 151, 149–153 | spa |
dcterms.bibliographicCitation | Liu, J.; Huang, X.; Hong, Y.; Li, Z. Coordinated Control Strategy for Operation Mode Switching of DC Distribution Networks. J. Mod. Power Syst. Clean Energy 2020, 8, 334–344 | spa |
dcterms.bibliographicCitation | Sarrias-Mena, R.; Fernandez-Ramirez, L.M.; Garcia-Vazquez, C.A.; Ugalde-Loo, C.E.; Jenkins, N.; Jurado, F. Modelling and control of a medium-voltage DC distribution system with energy storage. In Proceedings of the 2016 IEEE International Energy Conference (ENERGYCON), Leuven, Belgium, 4–8 April 2016; IEEE: Piscataway, NJ, USA, 2016. | spa |
dcterms.bibliographicCitation | Agustoni, A.; Borioli, E.; Brenna, M.; Simioli, G.; Tironi, E.; Ubezio, G. LV DC distribution network with distributed energy resources: Analysis of possible structures. In Proceedings of the 18th International Conference and Exhibition on Electricity Distribution (CIRED 2005), Turin, Italy, 6–9 June 2005; IEEE: Piscataway, NJ, USA, 2005. | spa |
dcterms.bibliographicCitation | Barrera, N.G.; González, D.P.; Mesa, F.; Aristizábal, A. Procedure for the practical and economic integration of solar PV energy in the city of Bogotá. Energy Rep. 2021, 7, 163–180. | spa |
dcterms.bibliographicCitation | Serra, F.M.; Montoya, O.D.; Alvarado-Barrios, L.; Álvarez-Arroyo, C.; Chamorro, H.R. On the Optimal Selection and Integration of Batteries in DC Grids through a Mixed-Integer Quadratic Convex Formulation. Electronics 2021, 10, 2339. | spa |
dcterms.bibliographicCitation | Gil-González, W.; Montoya, O.D.; Holguín, E.; Garces, A.; Grisales-Noreña, L.F. Economic dispatch of energy storage systems in dc microgrids employing a semidefinite programming model. J. Energy Storage 2019, 21, 1–8. [ | spa |
dcterms.bibliographicCitation | Simiyu, P.; Xin, A.; Wang, K.; Adwek, G.; Salman, S. Multiterminal Medium Voltage DC Distribution Network Hierarchical Control. Electronics 2020, 9, 506 | spa |
dcterms.bibliographicCitation | Zagirnyak, M.; Rodkin, D.; Romashykhin, I. The possibilities of Tellegen’s theorem in the identification electrotechnical problems. In Proceedings of the 2017 International Conference on Modern Electrical and Energy Systems (MEES), Kremenchuk, Ukraine, 15–17 November 2017; IEEE: Piscataway, NJ, USA, 2017. | spa |
dcterms.bibliographicCitation | Kazaoka, R.; Hisakado, T.; Wada, O. Balancing of instantaneous power flow in local area power network with Tellegen's theorem. In Proceedings of the 2012 IEEE International Conference on Power System Technology (POWERCON), Auckland, New Zealand, 30 October–2 November 2012; IEEE: Piscataway, NJ, USA, 2012 | spa |
dcterms.bibliographicCitation | Soroudi, A. Power System Optimization Modeling in GAMS; Springer International Publishing: Cham, Switzerland, 2017 | spa |
dcterms.bibliographicCitation | . Javadi, M.S.; Gouveia, C.S.; Carvalho, L.M.; Silva, R. Optimal Power Flow Solution for Distribution Networks using Quadratically Constrained Programming and McCormick Relaxation Technique. In Proceedings of the 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), Bari, Italy, 7–10 September 2021; IEEE: Piscataway, NJ, USA, 2021 | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Zishan, F.; Giral-Ramírez, D.A. Recursive Convex Model for Optimal Power Flow Solution in Monopolar DC Networks. Mathematics 2022, 10, 3649. | spa |
dcterms.bibliographicCitation | Cortés-Caicedo, B.; Grisales-Noreña, L.F.; Montoya, O.D.; Rodriguez-Cabal, M.A.; Rosero, J.A. Energy Management System for the Optimal Operation of PV Generators in Distribution Systems Using the Antlion Optimizer: A Colombian Urban and Rural Case Study. Sustainability 2022, 14, 16083. | spa |
dcterms.bibliographicCitation | Hassan, Q.; Jaszczur, M.; Przenzak, E.; Abdulateef, J. The PV cell temperature effect on the energy production and module efficiency. Contemp. Probl. Power Eng. Environ. Prot. 2016, 33, 1. | spa |
dcterms.bibliographicCitation | Schwingshackl, C.; Petitta, M.; Wagner, J.; Belluardo, G.; Moser, D.; Castelli, M.; Zebisch, M.; Tetzlaff, A. Wind Effect on PV Module Temperature: Analysis of Different Techniques for an Accurate Estimation. Energy Procedia 2013, 40, 77–86 | spa |
dcterms.bibliographicCitation | NASA. NASA Prediction Of Worldwide Energy Resources, Washington D.C., United States. Available online: https://power.larc. nasa.gov/ (accessed on 21 September 2022). | spa |
dcterms.bibliographicCitation | Montoya, O.D.; Grisales-Noreñ, L.F.; Giral-Ramírez, D.A. Multi-Objective Dispatch of PV Plants in Monopolar DC Grids Using a Weighted-Based Iterative Convex Solution Methodology. Energies 2022, 16, 976. | spa |
dcterms.bibliographicCitation | Ilyas, M.A.; Alquthami, T.; Awais, M.; Milyani, A.H.; Rasheed, M.B. (DA-DOPF): A Day-Ahead Dynamic Optimal Power Flow With Renewable Energy Integration in Smart Grids. Front. Energy Res. 2021, 9, 696837. | spa |
dcterms.bibliographicCitation | Garces, A. On the Convergence of Newton's Method in Power Flow Studies for DC Microgrids. IEEE Trans. Power Syst. 2018, 33, 5770–5777. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.identifier.doi | https://doi.org/10.3390/ batteries9020084 | |
dc.subject.keywords | Recursive convex model | spa |
dc.subject.keywords | Battery energy storage systems | spa |
dc.subject.keywords | Monopolar DC distribution networks | spa |
dc.subject.keywords | Efficient energy management system | spa |
dc.subject.keywords | Distributed energy resources | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Público general | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.