Mostrar el registro sencillo del ítem

dc.contributor.authorP. Kotas, Marian
dc.contributor.authorPiela, Michal
dc.contributor.authorContreras Ortiz, Sonia Helena
dc.date.accessioned2022-10-27T21:40:54Z
dc.date.available2022-10-27T21:40:54Z
dc.date.issued2022-08
dc.date.submitted2022-10-26
dc.identifier.citationM. P. Kotas, M. Piela and S. H. Contreras-Ortiz, "Modified Spatio-Temporal Matched Filtering for Brain Responses Classification," in IEEE Transactions on Human-Machine Systems, vol. 52, no. 4, pp. 677-686, Aug. 2022, doi: 10.1109/THMS.2022.3168421spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/11134
dc.description.abstractIn this article, we apply the method of spatio-temporal filtering (STF) to electroencephalographic (EEG) data processing for brain responses classification. The method operates similarly to linear discriminant analysis (LDA) but contrary to most applied classifiers, it uses the whole recorded EEG signal as a source of information instead of the precisely selected brain responses, only. This way it avoids the limitations of LDA and improves the classification accuracy. We emphasize the significance of the STF learning phase. To preclude the negative influence of super–Gaussian artifacts on accomplishment of this phase, we apply the discrete cosine transform (DCT) based method for their rejection. Later, we estimate the noise covariance matrix using all data available, and we improve the STF template construction. The further modifications are related with the constructed filters operation and consist in the changes of the STF interpretation rules. Consequently, a new tool for evoked potentials (EPs) classification has been developed. Applied to the analysis of signals stored in a publicly available database, prepared for the assessment of modern algorithms aimed in EPs detection (in the frames of the 2019 IFMBE Scientific Challenge), it allowed to achieve the second best result, very close to the best one, and significantly better than the ones achieved by other contestants of the challengespa
dc.format.extent10 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceIEEE Transactions on Human-Machine Systems - Vol. 52 N° 4 (2022)spa
dc.titleModified Spatio-Temporal Matched Filtering for Brain Responses Classificationspa
dcterms.bibliographicCitationL. A. Farwell and E. Donchin, “Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials,” Electroencephalogr. Clin. Neuriophysiol., vol. 70, no. 6, pp. 510–523, 1988.spa
dcterms.bibliographicCitationS. Sutton, M. Braren, J. Zubin, and E. R. John, “Evoked potential correlates of stimulus uncertainty,” Science, vol. 150, pp. 1187–1188, 1965.spa
dcterms.bibliographicCitationQ. T. Obeidat, T. A. Campbell, and J. Kong, “Introducing the edges paradigm: A P300 brain–computer interface for spelling written words,” IEEE Trans. Human-Mach. Syst., vol. 45, no. 6, pp. 727–738, Dec. 2015.spa
dcterms.bibliographicCitationS. Noorzadeh, B. Rivet, and C. Jutten, “3-D interface for the P300 speller BCI,” IEEE Trans. Human-Mach. Syst., vol. 50, no. 6, pp. 604–612, Dec. 2020spa
dcterms.bibliographicCitationJ. Qu et al., “A novel three-dimensional P300 speller based on stereo visual stimuli,” IEEE Trans. Human-Mach. Syst., vol. 48, no. 4, pp. 392–399, Aug. 2018.spa
dcterms.bibliographicCitationP. Stegman, C. S. Crawford, M. Andujar, A. Nijholt, and J. E. Gilbert, “Brain–computer interface software: A review and discussion,” IEEE Trans. Human-Mach. Syst., vol. 50, no. 2, pp. 101–115, Apr. 2020.spa
dcterms.bibliographicCitationA. Cruz, G. Pires, A. Lopes, C. Carona, and U. J. Nunes, “A self-paced BCI with a collaborative controller for highly reliable wheelchair driving: Experimental tests with physically disabled individuals,” IEEE Trans. Human-Mach. Syst., vol. 51, no. 2, pp. 109–119, Apr. 2021spa
dcterms.bibliographicCitationA. Nourmohammadi, M. Jafari, and T. O. Zander, “A survey on unmanned aerial vehicle remote control using brain–computer interface,” IEEE Trans. Human-Mach. Syst., vol. 48, no. 4, pp. 337–348, Aug. 2018.spa
dcterms.bibliographicCitationA. Rakotomamonjy and V. Guigue, “BCI competition III: Dataset II – ensemble of SVMs for BCI P300 speller,” IEEE Trans. Biomed. Eng., vol. 55, no. 3, pp. 1147–1154, Mar. 2008.spa
dcterms.bibliographicCitationM. Thulasidas, C. Guan, and J. Wu, “Robust classification of EEG signal for brain-computer interface,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 14, no. 1, pp. 24–29, Mar. 2006.spa
dcterms.bibliographicCitationS. Kundu and S. Ari, “P300 detection with brain–computer interface application using PCA and ensemble of weighted SVMs,” IETE J. Res., vol. 64, no. 3, pp. 406–416, 2018.spa
dcterms.bibliographicCitationY-R. Lee and H-N. Kim, “A data partitioning method for increasing ensemble diversity of an eSVM-based P300 speller,” Biomed. Signal Process. Control, vol. 39, pp. 53–63, 2018.spa
dcterms.bibliographicCitationC. Guger et al., “How many people are able to control a P300-based braincomputer interface (BCI)?,” Neurosci. Lett., vol. 462, pp. 94–98, 2009.spa
dcterms.bibliographicCitationD. J. Krusienski et al., “Toward enhanced P300 speller performance,” J. Neurosci. Methods, vol. 167, no. 1, pp. 15–21, Jan. 2008spa
dcterms.bibliographicCitationB. Blankertz et al., “Single-trial analysis and classification of ERP components’a tutorial,” NeuroImage, vol. 56, no. 2, pp. 814–825, May 2011spa
dcterms.bibliographicCitationU. Hoffmann, J. Vesin, T. Ebrahimi, and K. Diserens, “An efficient P300-based brain computer interface for disabled subjects,” J. Neurosci., vol. 167, no. 1, pp. 115–125, 2008spa
dcterms.bibliographicCitationY. Miao et al., “An ERP-based BCI with peripheral stimuli: Validation with ALS patients,” Cogn. Neurodynamics, vol. 14, pp. 21–33, 2020.spa
dcterms.bibliographicCitationY. Zhang, G. Zhou, J. Jin, Q. Zhao, X. Wang, and A. Cichocki, “Sparse Bayesian classification of EEG for brain–computer interface,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 11, pp. 2256–2267, Nov. 2016.spa
dcterms.bibliographicCitationQ. Wu, Y. Zhang, J. Liu, J. Sun, A. Cichocki, and F. Gao, “Regularized group sparse discriminant analysis for P300-based brain–computer interface,” Int. J. Neural Syst., vol. 29, no. 6, 2019, Art. no. 1950002.spa
dcterms.bibliographicCitationQ. Wu, Y. Zhang, J. Liu, J. Sun, A. Cichocki, and F. Gao, “Regularized group sparse discriminant analysis for P300-based brain–computer interface,” Int. J. Neural Syst., vol. 29, no. 6, 2019, Art. no. 1950002.spa
dcterms.bibliographicCitationB. Rivet, A. Souloumiac, V. Attina, and G. Gibert, “xDAWN algorithm to enhance evoked potentials: Application to brain–computer interface,” IEEE Trans. Biomed. Eng., vol. 56, no. 8, pp. 2035–2043, Aug. 2009.spa
dcterms.bibliographicCitationF. S. Rizi, V. Abootalebi, and M. T. Sadeghi, “Spatial and spatio-temporal filtering based on common spatial patterns and Max-SNR for detection of P300 component,” Biocybernetics Biomed. Eng., vol. 37, no. 3, pp. 365–372, 2017.spa
dcterms.bibliographicCitationX. Xiao, M. Xu, J. Jin, Y. Wang, T. -P. Jung, and D. Ming, “Discriminative canonical pattern matching for single-trial classification of ERP components,” IEEE Trans. Biomed. Eng., vol. 67, no. 8, pp. 2266–2275, Aug. 2020.spa
dcterms.bibliographicCitationX. Xiao et al., “Enhancement for P300-speller classification using multiwindow discriminative canonical pattern matching,” J. Neural Eng., vol. 18, no. 4, 2021, Art. no. 046079.spa
dcterms.bibliographicCitationD. J. Krusienski et al., “A comparison of classification techniques for the P300 speller,” J. Neural Eng., vol. 3, no. 4, pp. 299–305, 2006.spa
dcterms.bibliographicCitationH. Cecotti and A. Graser, “Convolutional neural networks for P300 detection with application to brain-computer interfaces,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 3, pp. 433–445, Mar. 2011spa
dcterms.bibliographicCitationL. Vaˇreka, “Evaluation of convolutional neural networks using a large multi-subject P300 dataset,” Biomed. Signal Process. Control, vol. 58, 2020, Art. no. 101837.spa
dcterms.bibliographicCitationO. Y. Kwon, M. H. Lee, C. Guan, and S. W. Lee, “Subject-independent brain–computer interfaces based on deep convolutional neural networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 10, pp. 3839–3852, Oct. 2020spa
dcterms.bibliographicCitationD. Coyle, G. Prasad, and T. M. McGinnity, “Extracting features for a brain-computer interface by self-organising fuzzy neural network-based time series prediction,” in Proc. 26th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., San Francisco, USA, 2004, pp. 4371–4374, 2004.spa
dcterms.bibliographicCitationW. Kong et al., “Weighted extreme learning machine for P300 detection with application to brain computer interface,” J. Ambient Intell. Humanized Comput., pp. 1–11, 2018.spa
dcterms.bibliographicCitationZ. Jin et al., “EEG classification using sparse Bayesian extreme learning machine for brain–computer interface,” Neural Comput. Appl., vol. 32, pp. 6601–6609, 2020.spa
dcterms.bibliographicCitationV. J. Lawhern, A. J. Solon, N. R. Waytowich, S. M. Gordon, C. P. Hung, and B. J. Lance, “EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces,” J. Neural Eng., vol. 15, no. 5, 2018, Art. no. 056013.spa
dcterms.bibliographicCitationM. Simões et al., “BCIAUT-P300: A multi-session and multi-subject benchmark dataset on autism for P300-based brain-computer-interfaces,” Front. Neurosci., vol. 14, 2020, Art. no. 568104.spa
dcterms.bibliographicCitationM. Liu, W. Wu, Z. Gu, Z. Yu, F. Qi, and Y. Li, “Deep learning based on batch normalization for P300 signal detection,” Neurocomputing, vol. 275, pp. 288–297, 2018.spa
dcterms.bibliographicCitationF. Li, X. Li, F. Wang, D. Zhang, Y. Xia, and F. He, “A novel P300 classification algorithm based on a principal component analysis-convolutional neural network,” Appl. Sci., vol. 10, no. 4, 2020, Art. no. 1546.spa
dcterms.bibliographicCitationM. Kotas, J. Je˙zewski, K. Horoba, and A. Matonia, “Application of spatio-temporal filtering to fetal electrocardiogram enhancement,” Comput. Methods Progr. Biomed., vol. 104, pp. 1–9, 2010.spa
dcterms.bibliographicCitationJ. Giraldo-Guzmán, M. Kotas, F. Castells, S. H. Contreras-Ortiz, and M. Urina-Triana, “Estimation of PQ distance dispersion for atrial fibrillation detection,” Comput. Methods Progr. Biomed., vol. 208, 2021, Art. no. 106167spa
dcterms.bibliographicCitationS. Lemm, B. Blankertz, G. Curio, and K-R. Müller, “Spatio-spectral filters for improving the classification of single trial EEG,” IEEE Trans. Biomed. Eng., vol. 52, no. 9, pp. 1541–1548, Sep. 2005.spa
dcterms.bibliographicCitationG. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, and K. Muller, “Combined optimization of spatial and temporal filters for improving brain-computer interfacing,” IEEE Trans. Biomed. Eng., vol. 53, no. 11, pp. 2274–2281, Nov. 2006.spa
dcterms.bibliographicCitationF. Qi, Y. Li, and W. Wu, “RSTFC: A novel algorithm for spatio-temporal filtering and classification of single-trial EEG,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 12, pp. 3070–3082, Dec. 2015.spa
dcterms.bibliographicCitationA. Jiang, J. Shang, X. Liu, Y. Tang, H. K. Kwan, and Y. Zhu, “Efficient CSP algorithm with spatio-temporal filtering for motor imagery classification,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 4, pp. 1006–1016, Apr. 2020spa
dcterms.bibliographicCitationF. Qi et al., “Spatiotemporal-filtering-based channel selection for singletrial EEG classification,” IEEE Trans. Cybern., vol. 51, no. 2, pp. 558–567, Feb. 2021spa
dcterms.bibliographicCitationJ. Lu, K. Xie, and D. J. McFarland, “Adaptive spatio-temporal filtering for movement related potentials in EEG-based brain–computer interfaces,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 4, pp. 847–857, Jul. 2014.spa
dcterms.bibliographicCitationY. Zhang, G. Zhou, Q. Zhao, J. Jin, X. Wang, and A. Cichocki, “Spatialtemporal discriminant analysis for ERP-based brain-computer interface,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 21, no. 2, pp. 233–243, Mar. 2013.spa
dcterms.bibliographicCitationS. M. Kay, “Fundamentals of statistical signal processing. detection theory,” in Signal Process. Ser.. Hoboken, NJ, USA: Prentice-Hall, vol. 2, 1998.spa
dcterms.bibliographicCitationR. Bro, E. Acar, and Tamara G. Kolda, “Resolving the sign ambiguity in the singular value decomposition,” J. Chemometrics, vol. 22, no. 2, pp. 135–140, 2008.spa
dcterms.bibliographicCitationG. D. Dawson, “A summation technique for detecting small signals in a large irregular background,” J. Physiol., vol. 115, no. 1, 1951.spa
dcterms.bibliographicCitationD. Garcia, “Robust smoothing of gridded data in one and higher dimensions with missing values,” Comput. Statist. Data Anal., vol. 54, no. 4, pp. 1167–1178, 2010.spa
dcterms.bibliographicCitationM. J. Buckley, “Fast computation of a discretized thin-plate smoothing spline for image data,” Biometrika, vol. 81, no. 2, pp. 247–258, 1994spa
dcterms.bibliographicCitationG. M. Foody, “Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy,” Photogrammetric Eng. Remote Sens., vol. 70, no. 5, pp. 627–633, 2004.spa
dcterms.bibliographicCitationA. Agresti, An Introduction to Categorical Data Analysis. Wiley, 2018spa
dcterms.bibliographicCitationM. N. Anastasiadou, M. Christodoulakis, E. S. Papathanasiou, S. S. Papacostas, and G. D. Mitsis, “Unsupervised detection and removal of muscle artifacts from scalp EEG recordings using canonical correlation analysis, wavelets and random forests,” Clin. Neuriophysiol., vol. 128, no. 9, pp. 1755–1769, 2017spa
dcterms.bibliographicCitationR. Vigario, J. Sarela, V. Jousmiki, M. Hamalainen, and E. Oja, “Independent component approach to the analysis of EEG and MEG recordings,” IEEE Trans. Biomed. Eng., vol. 47, no. 5, pp. 589–593, May 2000.spa
dcterms.bibliographicCitationE. J. Berbari, S. M. Collins, and R. Arzbaecher, “Evaluation of esophageal electrodes for recording his-purkinje activity based upon signal variance,” IEEE Trans. Biomed. Eng., vol. BME-33, no. 10, pp. 922–928, Oct. 1986spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.1109/THMS.2022.3168421
dc.subject.keywordsIndex Terms—Brain–computer interfaces (BCI)spa
dc.subject.keywordsDiscrete cosine transform (DCT)spa
dc.subject.keywordsGeneralized matched filtering (GMF)spa
dc.subject.keywordsSpatio– temporal filtering (STF)spa
dc.subject.keywordsVisual evoked potentials (EPs)spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.