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Modified Spatio-Temporal Matched Filtering for
Brain Responses Classification
Marian P. Kotas , Michal Piela , and Sonia H. Contreras-Ortiz

Abstract—In this article, we apply the method of spatio-temporal
filtering (STF) to electroencephalographic (EEG) data processing
for brain responses classification. The method operates similarly
to linear discriminant analysis (LDA) but contrary to most applied
classifiers, it uses the whole recorded EEG signal as a source of
information instead of the precisely selected brain responses, only.
This way it avoids the limitations of LDA and improves the classi-
fication accuracy. We emphasize the significance of the STF learn-
ing phase. To preclude the negative influence of super–Gaussian
artifacts on accomplishment of this phase, we apply the discrete
cosine transform (DCT) based method for their rejection. Later, we
estimate the noise covariance matrix using all data available, and we
improve the STF template construction. The further modifications
are related with the constructed filters operation and consist in
the changes of the STF interpretation rules. Consequently, a new
tool for evoked potentials (EPs) classification has been developed.
Applied to the analysis of signals stored in a publicly available
database, prepared for the assessment of modern algorithms aimed
in EPs detection (in the frames of the 2019 IFMBE Scientific
Challenge), it allowed to achieve the second best result, very close
to the best one, and significantly better than the ones achieved by
other contestants of the challenge.

Index Terms—Brain–computer interfaces (BCI), discrete cosine
transform (DCT), generalized matched filtering (GMF), spatio–
temporal filtering (STF), visual evoked potentials (EPs).

I. INTRODUCTION

CAPABILITY for quick and reliable classification of brain
responses plays a key role in designing modern and effi-

cient brain-computer interfaces (BCI). Responses of the brain
in BCI are triggered by external (visual, auditory) or internal
(mental simulation of a physical action) stimuli, therefore, are
called as evoked potentials (EP). Among a group of brain’s re-
sponses to a visual stimulus, P300 is characterized by the greatest
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amplitude, therefore, considered as a suitable measure of the
brain activity during visual tasks [1]–[8]. The idea to employ this
potential as a control signal in BCI was first introduced in 1988
by Farwell and Donchin [1]. Since then, the major challenge
remains the same and involves very low energy of the desired
EP in reference to the spontaneous activity of the brain. Conse-
quently, its proper classification requires multiple presentation
of the same stimulus and averaging of the consecutive responses
of the brain. This in turn prolongs the time of an experiment and
thereby a period of high concentration a user needs to maintain. It
is inconvenient, particularly for people whose medical condition
affects their ability to stay focused long on the mental or visual
task. Therefore, an effort is made to shorten this time by reducing
a number of averaging steps necessary to recognize an EP.

Development of new, more effective classifiers is one of the
ways to achieve this objective. The aim of the classifiers is to
discriminate between two types of brain responses: target which
are triggered by the stimuli, the user is focused on, and nontarget,
i.e., caused by other stimuli, the user is trying to neglect. Popular
algorithms that assure good performance are based on support
vector machines [9], [10], ensemble of weighted support vector
machines [11], [12], linear discriminant analysis (LDA) [13],
stepwise LDA [14], shrinkage LDA [15], Fisher’s and Bayesian
LDA (FLDA, BLDA) [16], [17], sparse Bayesian LDA [18], and
regularized group sparse LDA [19].

While the above listed methods perform an outright classifi-
cation of the brain responses stored in signal matrices, there are
also methods, which precede the classification by prior signal
enhancement and feature extraction using spatial (the xDAWN
algorithm [20]) or spatial and temporal projections [21]. In [22],
a two-step projection using spatial LDA and temporal canonical
correlation analysis was proposed to form feature vectors for
later classification; a further extension of this approach was
described in [23].

Although the linear methods appeared to be advantageous in
application to EP detection [24], there are attempts to utilize also
the nonlinear ones, like e.g., convolutional neural networks [25]–
[27], self-organizing fuzzy neural networks [28], or extreme
learning machines [29], [30]. Particularly fast development can
be observed in applications of convolutional neural networks.
In [25], the first convolutional layer performs spatial filtering
and the second, the temporal one; later, the fully connected
multilayer perceptron is employed for final classification. The
authors achieved good results using an ensemble of such clas-
sifiers (called as a multiclassifier system). In [31], the order of
spatial and temporal filtering was reversed. This architecture
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was also adopted in [32]. Similarly, in [33] and [34], where
the convolutional neural network was preceded by additional
preprocessing steps to improve the classification results.

Spatio-temporal filtering (STF) is an intrinsically linear
method, applied, e.g.: to detection of low amplitude signals of
repeatable morphology embedded in high energy noise [35], [36]
or to motor imagery (MI) tasks classification [37]–[40], or to re-
lated operations like selection of the proper EEG channels [41],
or extraction of movement related potentials [42] for later MI
classification. The alternating spatial–temporal optimization and
projection was applied to event related potentials classification
in [43].

We have applied STF to tackle the fundamental problem
of LDA based approaches to EP classification, i.e., the sin-
gularity of the within-class covariance matrix which has to be
inverted [16]. This singularity results usually from a large dimen-
sion of a feature vector (it is equal to the product of a number of
time samples covering a brain response and a number of channels
recorded) and a limited number of the brain responses used
for the classifiers learning. Since the within-class dispersion
results mostly from the presence of noise in the feature vectors,
this problem can be seen as an issue of the noise properties
estimation. Accomplishment of this operation on the basis of
target and nontarget responses, only, seems to be unjustified. We
propose to reject this restriction and perform the noise covari-
ance matrix estimation using different time segments of EEG
signals, not necessarily those corresponding to the precisely
selected brain responses. Moreover, taking into account that STF
is most effective in the colored Gaussian noise (CGN) [44], we
propose to reject super–Gaussian artifacts for better estimation
of the CGN properties. This improves the EP classifiers learning
without the necessity of inversion regularization [16], or feature
vectors dimension reduction [20], [21].

A further improvement can be achieved if we face the fact
that brain responses can have different time delays with respect
to the stimuli (flashes) and it is not always justified to apply the
classifiers to the same time segments after the stimuli.

The rest of this article is organized as follows. Section II
explains the operation of a BCI system. Section III provides
detailed description of the original STF method; its modifica-
tions are presented in Section IV. Results of experiments and
their discussion are presented in Section V. Finally, Section VI
concludes this article.

II. EVOKED POTENTIALS (EPS) BASED BCI

During EPs based BCI experiments, a subject faces a screen
filled with different objects (letters, signs or pictures, etc.) and
is focused on the selected one. Fig. 1 shows an example where
the user interface contains six household appliances, and the
user focuses on the lamp. The six objects are flashed one at
a time in a random order. The flash of the item the user is
focused on (lamp) is considered as the target event; flashes of
the other items are the nontarget ones. We expect the target
to elicit higher responses of the brain than the nontargets.
Once all the objects have been flashed (one target and five
nontargets), we can compare the elicited brain responses. It is

Fig. 1. Illustration of BCI experiment; a moment when visual stimulus (target)
is captured.

accomplished by comparing the outputs of the classifier applied
to these six events. The one with the highest score indicates
the picture classified as a target. However, because of a very
low amplitude of the brain responses to the visual stimuli, it
is very rare to achieve proper discrimination at this step of the
experiment.

Therefore, this part of the experiment, so called run (of
six flashes), when each visual stimulus occurs only once, is
insufficient. Multiple repetition of such runs of flashes is re-
quired. In each consecutive run, the order of pictures flash-
ing is random, independent from the other runs. This way
of presentation involves an element of surprise, necessary to
elicit an EP. For every individual picture, the outputs obtained
in the consecutive runs are averaged. Typically, taking into
account more subsequent runs, the averaged response to a
target stimulus is increased when compared to the averaged
responses to the nontarget ones. Consequently, increasing the
number of runs analyzed should increase the classification
accuracy.

The described series of runs, related with one particular target
object, is called as a block. During the experiments, this process
(block) is usually repeated for every object (on the screen)
regarded as a target. All blocks executed form a session. In the
considered example, a session contains six blocks.

In the experimental section, we will analyze the dataset
BCIAUT-P300, recorded during similar experiments. It was cre-
ated for a purpose of the 2019 IFMBE Scientific Challenge [32].
The dataset contains recordings of 15 subjects diagnosed with
autism spectrum disorder. The structure of the data is as follows:
there are seven learning and seven testing sessions recorded by
every subject. Each learning session contains 20 blocks. During
each of the blocks, the user is focused on one picture (the one
selected as a target, out of eight available on the user interface).
Every block is built of 10 runs, each of which gathers single brain
responses to all possible events (one target and seven nontargets).
The testing subset is organized in a similar manner; however,
the number of runs per block varies between 4 and 10. The EEG
signals recorded are sampled with the frequency of 250 Hz,
notch-filtered at 50 Hz, and bandpass-filtered between 2 and
30 Hz. Signals were acquired using eight-channel configuration
(electrodes were positioned at C3, Cz, C4, CPz, P3, Pz, P4, POz).
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III. SPATIO-TEMPORAL FILTERING

Lets denote the m channel signal vector as x(k) =
[x1(k)x2(k), . . . , xm(k)]T . To exploit the spatial and temporal
relationships between the signal components, we have defined,
similarly as in [35], the following vector representation of the
multichannel signals:

x(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(k − J · τ)
x1(k − (J − 1)τ)

. . .

x1(k + (J − 1)τ)

x1(k + J · τ)
. . .

xm(k − J · τ)
xm(k − (J − 1)τ)

. . .

xm(k + (J − 1)τ)

xm(k + J · τ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

containing 2J + 1 time samples from m channels available (the
x(k) vector length is p = (2J + 1)m).

Parameter τ is introduced to perform a kind of signal re-
sampling (from the original frequency fs to fs/τ , applied in
spatio-temporal vectors). We assume that this new frequency
should not be smaller than 40 Hz, thus parameter τ can be
calculated according to: τ = � fs[Hz]

40 �, where �·� denotes the
largest integer not greater than the argument.

The filtering operation can be expressed as

y(k) = hTx(k) (2)

and if we want to perform detection of some signal pattern of a
finite length Tp, the time interval 2 · J · τ should not be shorter.

Thus, parameter J can be calculated according to: J =
⌈
fs·Tp

2·τ
⌉

,

where �·� denotes the smallest integer not smaller than the
argument.

A. STF Construction

Let’s denote the moments when the target object is flashed as
ki, i = 1, 2, . . . , It (It denotes the total number of these flashes).
We assume that the brain response to the ith flash begins at
ki and ends at ki + 2 · J · τ . This time segment corresponds
to spatio-temporal vector x(ki+J ·τ). For this vector, the filter
should produce the maximal output value. Since the slope of the
output signal is limited, more of its neighboring time samples
will be magnified (· · · , y(ki + J · τ − 1), y(ki + J · τ), y(ki +
J · τ + 1), · · · ). Thus, to construct the filter we first specify the
following set indicating the spatio–temporal vectors that should
be maximized

Ψt(δ) = {k| |k − (ki + J · τ)| ≤ δ · fs, i = 1, 2, . . . , It}
(3)

where δ denotes the assumed time range.
We want the filter to be very sensitive to the corresponding

set of vectors (x(k), k ∈ Ψt(δ)). On the other hand, we want
it to produce as low output as possible in other moments of

time. Therefore, we create an auxiliary setΨt(Δ)with argument
Δ > δ. On this basis, we create the set corresponding to spatio–
temporal vectors that should be suppressed

Ψsupp(Δ) = Ψ−Ψt(Δ) (4)

where Ψ denotes the set of all time indices for which vectors
x(k) have been constructed. Thus Ψsupp(Δ) indicates all vectors
x(k) whose time location is rather distant from the vectors
maximized.

Finally, we create the following objective function:

Q(h) =

1
|Ψt(δ)|

∑
k∈Ψt(δ)

(hTx(k))2

1
|Ψsupp(Δ)|

∑
k∈Ψsupp(Δ)(h

Tx(k))2
(5)

where | · | denotes the set cardinality.
We gather the spatio–temporal vectors that are maximized in

matrix Apxna
= [a1,a2, . . . ,ana

], and those which we want
to suppress in matrix Bpxnb

= [b1,b2, . . . ,bnb
], where na =

|Ψt(δ)| and nb = |Ψsupp(Δ)|. This way we obtain the following
function:

Q(h) =
1
na

‖hTA‖2
1
nb
‖hTB‖2 =

hTCah

hTCbh
(6)

where Ca = 1
na

AAT and Cb =
1
nb
BBT .

Function Q(h) has the form of a Rayleigh quotient whose
maximization can be achieved using the generalized eigende-
composition

Cah = λCbh. (7)

The solution, we are interested in, is the generalized eigenvector
e1 that corresponds to the greatest eigenvalue. Here, we face the
problem of the eigenvector sign ambiguity [45]. We solve it by
using either h = e1 or h = −e1, so as the average response of
the filter to the learning vectors stored in matrix A was positive.

This original version of the STF method [based on eigende-
composition (7)] will further simply be denoted as OSTF.

B. STF Interpretation

Lets denote the onset of the oth object ith flash as oki. The
STF filter response to this flash is expected at oki + J · τ (see
the explanation in Section III-A). It is therefore sufficient to
calculate and store for further analysis the values

qi,o = y(oki + J · τ); o = 1, 2, . . . , Io; i = 1, 2, . . . , Ir (8)

where Io denotes the number of objects on the screen, and Ir is
the number of analyzed runs of flashes.

Thus, the oth column of the formed QIrxIo matrix contains
the scores obtained for successive flashes of the oth object. If
we want to select the target object on the basis of one run of
flashes only (Ir = 1), we simply choose o for which q1,o has
the greatest value. However, we usually take into account more
runs (Ir > 1), and we select the column for which the mean of
the corresponding Ir values is highest.

The described interpretation rules share an important feature
with most classifiers applied to EP discrimination. They select
the same located segments of the EEG signal following the
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stimuli (contained in vectors x(ki+J ·τ), i = 1, 2, · · · ) to perform
classification. Therefore, they will further be referred to as the
classical decision rules (CDR).

C. Averaging of the Maximized Spatio–Temporal Vectors

In [36], we propose to calculate the average of the vectors
stored in A

ā =
1

na

na∑
i=1

ai. (9)

Objective function (6) can now be replaced by

Q(h) =
hT (āāT )h

hTCbh
(10)

and consequently, the eigendecomposition (7) based formula is
substituted by the product

h = C−1
b ā (11)

which is computationally identical to the one used for con-
struction of the highly acknowledged generalized matched fil-
ters [44]. Therefore, this solution will further be referred to
as the generalized spatio–temporal matched filtering (GSTMF).
GSTMF and OSTF will be regarded as reference methods for
the assessment of the modified spatio–temporal matched filter
(MSTMF), which we propose in this article.

IV. MODIFIED SPATIO–TEMPORAL MATCHED FILTERING

Although the brain responses to the nontarget flashes are
very tiny, in [16], it was shown that taking into account these
responses during classifiers learning (and not only the target
responses) improves discrimination between them. To make use
of this finding, we construct setΨnt(δ) using (3) withki replaced
by k′i, i = 1, 2, . . . , Int (corresponding to the moments when the
nontarget objects are flashed). On this basis, we form matrix
A′ that contains vectors beginning close to these nontarget
flashes {x(k+Jτ)| k ∈ Ψnt(δ)}. By averaging these vectors, we
construct the average nontarget response ā′.

Now, objective function Q(h) takes the following form:

Q(h) =
hT (ā− ā′)(ā− ā′)Th

hTCbh
(12)

and its solution is given by

h = C−1
b (ā− ā′). (13)

The EEG signals can contain outlying super–Gaussian ar-
tifacts, which can have a detrimental influence on the filter
template construction. Because of this, we precede the learning
phase of the proposed method with the procedure for outlying
artifacts rejection.

A. Rejection of Outlying Artifacts (ROA)

The procedure consists of the operation of outlying artifacts
detection and of the stage of the detected artifacts suppression.

1) Detection of Outlying Artifacts: The operation is per-
formed in each channel separately. Its first step involves cal-
culation of the 5th and 95th percentile of all values in the
channel. Then, multiplied by d these percentiles are regarded as
thresholds that limit the negative and positive values accepted,
respectively. In the experimental section, we use d = 3 (during
initial experiments, for d ∈ [2, 5], we have observed similar
performance of EP classification). In each place, where the
thresholds are crossed, we search for the signal maximum (or
minimum), and starting from this position, we search for the
artifact onset and offset. The criterion is based on the signal
derivative: in order to find the first and the last sample of the
artifact, we search for the positions (to the left and to the right
from the extremum, respectively), where the derivative polarity
changes. All samples that belong to the found artifacts are
marked as outlying; for signal x(k) recorded during a single
block, we form matrix Z containing the markers, which classify
the samples of x(k) as outlying (0) or proper (1)

zi,j =

{
0, if xj(i) is outlying

1, if xj(i) is proper
. (14)

Simultaneously, the xj(i) values marked as outlying are consid-
ered as missing and are replaced with zeros.

2) Missing Values Interpolation: To this end, we apply the
iterative interpolation procedure, developed in [47] and facili-
tated as MATLAB function inpaintn by Garcia. The procedure is
based on the discrete cosine transform (DCT) based smoothing
proposed in [48]. The values of signal x(k) are stored in matrix
X (subsequent channels in subsequent columns of X). Then, Z
defined by (14) and X are submitted to the inpaintn procedure.
On the basis of the output matrix X̂ (ŷ{k+1} defined in [47, eq.
(20)], where {k + 1} denotes the number of iteration), we obtain
the signal with outlying artifacts suppressed x̂(k).

B. Modification of the Decision Rules

The CDR, described in Section III-B, are less effective if the
brain responses to the flashes are of changing delays. To over-
come this inconvenience, we propose to calculate the average
MSTMF responses to the Ir flashes of each object

ȳo(k) = hT
i=Ir∑
i=1

x(oki+J ·τ+k) =

i=Ir∑
i=1

y(oki + J · τ + k).

(15)
The maximum of this average response to the oth object is
expected at k = 0. However, we search for its true position
around this point

ko = argmax|k|≤rs
ȳo(k) (16)

where variable rs limiting the range of the search can be es-
tablished using rs = Ts · fs (following the preliminary experi-
ments, Ts = 0.1 s has been applied).

The value ȳo(ko) is taken as the classifier score for the oth
object. The object that achieves the highest value is regarded
as the target one. This approach to STF interpretation will be
referred to as the modified decision rules (MDR).
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Fig. 2. Results of outlying artifacts suppression: original 64-channel EEG
recording; in bold black: the channels with artifacts detected, in gray: the
channels accepted.

C. MSTMF Responses as Feature Vectors

To exploit not only the height of the STF responses to the
respective objects, but also their shape, we take the values:
ȳo(ko + k), k = −rs,−rs + 1, . . . , rs, as the features of the oth
object [rs is the parameter used in (16)]. Those feature vectors
can undergo classification for better discrimination between the
target and nontarget brain responses. Since the amplitudes of
the signals at the MSTMF output can vary substantially, we nor-
malize them by dividing by their standard deviation (SD). This
operation is accomplished during each individual classification
task (for which the normalizing SD value is calculated on the
basis of the signals recorded during all Ir flashes of the respective
objects). In the experimental section, the SVM with linear kernel
function will be applied for classification. The obtained combi-
nation of methods will simply be denoted as MSTMF+SVM (as
opposed to MSTMF+CDR and MSTMF+MDR).

V. RESULTS AND DISCUSSION

A. Signals Preprocessing

Both in the learning phase and during the STFs operation, the
processed EEG signals undergo prior band-pass filtering [32].
ROA, which is rather time consuming, is applied during the
learning phase, only. Figs. 2 and 3 show exemplary results
of this operation. Fig. 2 contains an original 64-channel EEG
recording with the noise artifacts; channels detected as noisy
are marked in bold black. Exactly the same time frame of the
signal is included in Fig. 3; here, the artifacts are significantly
reduced (in bold black are the plots of the channels modified).
In dataset BCIAUT-P300, used in this study, the signals are not
stored in a continuous way (where all the channels and time
samples are accessible). Instead, for each stimulus (a flash of
a single object on the screen) a signal segment of 1.4 s length
is written down: beginning 200 ms before the flash onset. Such
length is insufficient for outlying artifacts rejection. To make
this operation possible, all time segments corresponding to the
flashes of 8 objects during 10 runs of flashes are first conflated.
After this operation, we perform outlying artifacts rejection.

Fig. 3. Results of outlying artifacts suppression: the modified 64-channel EEG
recording; in bold black: the modified channels, in gray: the unchanged channels.
The amplitude scale has been changed with respect to Fig. 2.

Fig. 4. LDA classifier (subplots A,B) versus MSTMF filter (C,D). Vectors are
constructed according to (1); vertical dotted lines mark segments of 2J + 1 =
43 values, corresponding to individual EEG channels (whose names are given in
subplot A). From the top: A) the difference between the centers of the target and
nontarget classes, B) coefficients of the LDA classifier, C) the difference ā− ā′
(calculated to determine MSTMF) and D) the obtained MSTMF template; a.u.
stands for arbitrary units. .

B. Construction of the Modified Spatio–Temporal Matched
Filters

We have set parameters τ and J to 6 and 21, respectively,
according to the formulas given below (1) and (2), so that the
filter length (2 · J · τ/fs) covered approximately 1 s period.
Analysis of such a segment is oriented toward detection of the
whole group of EPs, not only P300.

For each subject, we apply all learning data to calculate
the mean target (ā) and nontarget (ā′) brain responses, and
the covariance matrix Cb. The exemplary difference ā− ā′ is
presented in Fig. 4.C and the final MSTMF filter, in subplot D.
For reference, we have plotted the results of using LDA (in A
and B).

Subplots A and C are very similar, with the plot in C being
slightly more smooth (as it is explained in Appendix A, for
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TABLE I
ACCURACY (± STANDARD ERROR OF MEAN (SEM)) OF TARGET STIMULI

DETECTION USING THE METHODS PROPOSED, THE BAYESIAN LDA, AND THE

METHODS PARTICIPATING IN 2019 IFMBE SCIENTIFIC CHALLENGE (FOR THEIR

PRECISE DESCRIPTION SEE [32])

δ > 0 a kind of low-pass filtering is introduced). However, the
final templates constructed are quite different; although we can
see some similarity of the plots in B and D, the latter is of much
better quality. It seems to be well matched to the local properties
of the brain responses, whereas the former is embedded in wide
band contaminations, and therefore can be expected to be more
susceptible to noise. This substantial difference is primarily
caused by more effective estimation of the noise covariance
matrix Cb (if compared to the within class scatter matrix of
the LDA classifier).

This can be explained in the following way: Cb is estimated
on the basis of spatio–temporal vectors x(k) indicated by set
Ψsupp(Δ). As it has been expressed below its definition (4), the
set indicates vectors whose time location is rather distant from
the vectors maximized (corresponding to target flashes). Thus,
almost all vectors corresponding to nontarget flashes can be used
for Cb estimation. As it has already been mentioned, the signals
we use for experiments consist of 1.4 s long segments, corre-
sponding to all individual flashes of the respective objects. With
the sampling frequency fs = 250 Hz and the assumed values of
J and τ , applying (1) we construct 98 spatio-temporal vectors
for each of such signal segments. All such vectors corresponding
to nontarget flashes are used to estimate Cb and also a part of
vectors corresponding to the target ones (their accepted number
depends on the assumed value of parameter Δ). By contrast,
only 1 vector corresponding to each individual flash (both target
and nontarget) is used to estimate the within class scatter matrix
in LDA.

C. Brain Responses Classification

We have applied all the methods described: OSTF, GSTMF,
and MSTMF, and as a particular reference: the BLDA [16], i.e.,
the method that uses Bayesian regularization to overcome the
LDA limitations (the software has been provided by the authors).
The results are presented in the upper part of Table I.

For each of our methods, we had to select the values of
parameters δ and Δ. It has, however, appeared that for the

dataset used, Δ has hardly any influence on the classification
results. Thus, a fixed value of Δ = 0.1 s has been applied. For
parameter δ, we performed a kind of cross validation. The filters
were constructed on the basis of six learning sessions and applied
to the seventh one. After rotation of this validation session and
averaging of the results, an estimate of the accuracy was obtained
for each value of δ. Following, we could select the one for
which the best validation accuracy has been achieved. This value
has been used in the final tests. BLDA has been applied using
different decimation factors [16], and the best results achieved
are presented. In the lower part of the table, for reference, the
results of 2019 IFMBE Scientific Challenge are provided.

Watching the table, we can notice that using the generalized
eigendecomposition (7) based OSTF with the CDR gives rather
poor results. The large standard error of mean: SEM=8.01,
shows that the method could have been fairly effective for
some subjects and must have failed for some other ones. When
formula (11) is applied in the learning phase, the filter (GSTMF)
performs much better, competitively to BLDA and to most
sophisticated methods competing in the challenge reported.
The high accuracy of such a relatively simple method must be
perceived as an outcome of the proper estimation of the noise
covariance matrix Cb: on the basis of the whole information
available, contained in the recorded EEG signals. This has
resulted in a fairly effective filter but the further modifications
of a mean nontarget brain response (ā′) subtraction, and DCT
based outlying artifacts rejection, applied by MSTMF, have still
raised its performance.

However, it is application of the MDR that has resulted in
most significant improvement of the classification results. The
reasons of such an outcome are illustrated in Fig. 5. Presented are
the MSTMF responses to a block of nine runs of flashes (each run
consisting of one target and seven nontarget flashes). Individual
filter responses to the successive nine target flashes are presented
in subplot A. Below in subplot B are the filter responses to nine
flashes of a single nontarget object; we have selected the one
(among seven) that has produced the highest average nontarget
MSTMF response. Both in A and B, the plots seem to be
dominated by high energy responses to the spontaneous EEG.
A correct classification on the basis of such single responses
does not seem possible. It is their averaging that is necessary
to achieve the goal, and the average of plots from A is drawn
with blue color in subplot C. We can observe a high amplitude
peak, whose dominant component is the MSTMF response to
the desired EP. What is surprising, however, is that the peak
maximum is significantly shifted to the right from k = 0. Thus,
application of CDR would cause the classification error: the
height at k = 0 of the blue target response (marked by the red
cross) is lower than the height of the corresponding nontarget
one in D. Only the search for the maximum of the filter response
leads to the correct classification because the height of the green
point in C is greater than the corresponding one in D. Thus, in
spite of the rather great height of the average target response, it is
only application of MDR that allowed to avoid the classification
error.

This observation is confirmed by the increased classification
accuracy of MSTMF+MDR. It has risen up to above 90%. Using
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Fig. 5. Operation of the decision rules (MDR versus CDR): A) individual
MSTMF responses to target flashes during a block of the successive Ir = 9
runs of flashes [variable k on the horizontal axis is introduced by (15)], B) the
MSTMF responses to Ir flashes of a single nontarget object, C) the average
target MSTMF responses (the one in blue is the mean of the plots in A; the
black ones correspond to different blocks of flashes), D) the average nontarget
MSTMF response (the mean of the plots in B). The double-sided arrow shows
the region of the search for the maxima of the MSTMF responses. The red
crosses mark the values of the scores obtained for k = 0 (according to CDR),
and the green points, the ones obtained using MDR (the maxima in the specified
range of the search). The additional comments are in the text.

TABLE II
STATISTICAL SIGNIFICANCE (S-SIGNIFICANT, N-NONSIGNIFICANT) OF THE

DIFFERENCES BETWEEN THE METHODS TESTED: LETTER S MEANS THAT THE

P-VALUE < 0.001

MSTMF responses as feature vectors and the SVM classifier has
allowed to improve the results only slightly. Nevertheless, the
increase of accuracy to nearly 91% is worth noticing.

To verify statistical significance of the differences between
the methods tested, we have compared them pairwise, denoting
as f12 the number of the cases classified correctly by the first,
and incorrectly by the second method compared, and as f21 the
number of opposite ones. On this basis, we have calculated the
squared McNeymar statistic [49]

z =
(f12 − f21)

2

f12 + f21
(17)

which obeys the Chi-square distribution with one degree of
freedom [50].

The results obtained are presented in Table II. For all methods
tested, we have confirmed statistical significance of improve-
ment with respect to the original OSTF method. This confirms

TABLE III
COMPUTATIONAL TIMES (± STD)

inadequacy of using the eigendecomposition based approach for
so noisy signals.

Comparing MSTMF (applied with the MDR or with the SVM
classifier) with the reference method (BLDA), we can notice sta-
tistically significant improvement of the classification accuracy.
This seems surprising because BLDA uses advanced Bayesian
regularization for estimation of the classifier template. However,
the need to apply regularization results from the abovementioned
limitations of the LDA based approaches, and although the
Bayesian regularization can effectively solve the problem of
singularity of the scatter matrix to be inverted, it does not solve
the problem of changing delays of the brain responses.

Thus, the most significant improvement of MSTMF accuracy
is related with the modification of the decision rules. Averaging
of the MSTMF responses to individual flashed objects and the
search for maxima of such average responses, applied in MDR,
have allowed to raise the classification accuracy to above 90%,
and have made the MSTMF method not only significantly better
than the reference BLDA, but even comparable to the winner of
2019 challenge, i.e., to the convolutional neural network based
on the EEGnet software [31]. Moreover, compared to the second
best competitor of the challenge, MSTMF appeared significantly
more effective. This justifies using the modifications proposed,
which are aimed to extract all the information from the whole
EEG signal recorded.

The introduced modifications inevitably increase the compu-
tational costs of the methods. To illustrate this, in Table III, we
have provided the times necessary to accomplish the learning
stage and the operation stage of the selected versions of the STF
method. Learning and testing times shown in Table III are the
subject-averaged execution times. It should be noted that for
each subject the total length of the learning signals is approx-
imately equal to 37.3 min, and the length of the test signals is
around 56 min. As far as the learning stage is realized, we can
notice rather great differences between the respective methods.
However, the operation stage is much much faster, and should
not preclude any of the studied versions of the STF method from
practical applications. For every method mentioned in Table III,
the analysis of a 1.4 s long segment of the signal (related to one
event) is executed in around 3 ms time.

One of the fundamental questions related with the develop-
ment of real working BCI systems is: how many EEG channels
are required to achieve satisfactory results. To give some insight
into the matter, we have performed the following experiment.
For MSTMF, we decreased the number of leads available (us-
ing the same cross validation as for selection of parameter δ)
and calculated the classification accuracy achievable. Fig. 6.A
presents the results obtained. It reveals that it is advantageous to
measure at least six channels, since for five of them the accuracy
discernibly drops down. The another question is: how dense
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Fig. 6. Illustration of the factors that influence the classification accuracy of
the MSTMF based BCI system: A) Accuracy as a function of the channels
number, B) Accuracy as a function of τ .

should the brain responses be resampled, in the spatio–temporal
vectors constructed, to achieve good classification results. This
is related with the value of parameter τ . In Fig. 6.B, we can
notice that for τ growing over the value of 10, the classification
accuracy decreases, discernibly. The applied value of τ = 6,
calculated according to the formula given below (1), seems to
be a good compromise between the computational costs of the
method and its achievable classification accuracy.

The proper estimation of the noise covariance matrix is highly
important. It not only allows to construct the filter with visually
good properties, like the one presented in Fig. 4, but also assures
effective suppression of stationary CGN of even extremely high
energy. The problem can arise if the noise in test signals changes
its properties with respect to this from the learning data. Such
situation must be taken into account because we cannot assume
the noise stationarity during different sessions, and even in long
time intervals. A kind of remedy could be found if we had
rather large learning database. This would allow us to construct
many filters matched to different local noise properties. Later
the weighted sum of the obtained ensemble of filters could be
effective for the noise present in test signals. Development of
such an ensemble of filters seems to be a promising direction for
the future study.

However, we expect that it can be even more promising to
apply the MDR in the already developed EP classifiers. Taking
into account possible changes of the brain responses time de-
lays (with respect to the stimuli) and looking for their correct
localization, corresponding to the locally highest scores of the
classifiers, should help to raise the accuracy of many existing
algorithms.

VI. CONCLUSION

In this study, we have proposed application of spatio–temporal
filtering to classification of visual EPs elicited by target and
nontarget stimuli. We have shown that using the whole recorded
EEG signal as a source of information instead of the same located
brain responses to those stimuli, only, significantly improves the
classification accuracy.

There are two major factors that contribute to this outcome.
The first one consists in the appropriate construction of the STF,

and the second, in the proper interpretation of the filtering results.
To meet the first requirement, we have rejected the limitation
of using only target and nontarget brain responses to estimate
the noise covariance matrix. Instead, we have used all the data
satisfying the necessary conditions, solving in this simple way,
the problem of singularity of the matrix to be inverted. Moreover,
we have proposed outlying artifacts rejection before the filter
construction, what has still improved its performance. Applied
with the CDR, the developed MSTMF filter has allowed to obtain
relatively high accuracy of EP classification.

To meet the second requirement, we have addressed the
problem of changing delays of the brain responses with respect
to the visual stimuli. A delayed brain response at the MSTMF
input inevitably results in a delayed filter response at its output.
Therefore, it appears beneficial to look for the maxima of these
responses. This search is preceded by averaging of the MSTMF
responses to the flashes of the respective objects. Since averaging
of the target responses causes their enhancement, it helps to find
the correct maxima. These operations referred to as the MDR
have significantly increased the EP classification accuracy.

With the very limited costs of MSTMF operation, we believe
that our method can contribute to construction of more reliable
and faster brain–computer interfaces.

APPENDIX A ON THE NOISE INFLUENCE ON STFS

CONSTRUCTION

In the following, we will consider the filters defined by (11),
related directly to the acknowledged generalized matched filter-
ing (GMF). The GMF allows for detection of a known signal
embedded in a CGN [44].

In the problem studied, the noise component is a complicated
mixture produced mostly by the ongoing brain activity but also
by the noncortical biologic sources (e.g., eye blinks and move-
ments, or muscle and heart contractions) and the environmental
sources (e.g., powerline, radio and electrical interference) [51].
Some of these components, like e.g., sinusoidal powerline in-
terference are sub-Gaussian (with flatter distribution than Gaus-
sian [52]) and some are super-Gaussian (sharper, with so called
“heavy” tails, associated with relatively high probability of large
amplitude peaks). This non-Gaussianity allows their separation
using independent component analysis [52].

However, the recorded and processed signals are the mixtures
of such components, and owing to the central limit theorem,
we can make a simplifying assumption of their Gaussianity,
unless one of these components has a predominant amplitude.
Because of a strong correlation between the EEG channels and
the successive signal samples, we can assume the noise to be
colored.

The constructed average pattern ā can be expressed as

ā =
1

na

na∑
i=1

(s+wi) = s+ w̄ (18)

where s is the fixed desired signal and wi, the additive noise. To
achieve noise suppression, the noise vectors wi should be [53]

1) of zero mean (E{wki} = 0, where wki is the kth entry of
vector wi, E denotes expectation).
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2) uncorrelated with the desired signal (E{sn · wki} = 0).
3) uncorrelated among themselves (E{wki · wnj} =

0, for i 
= j.
It should be noted that for Gaussian signals uncorrelatedness
is equivalent to independence, with the latter being a stronger
condition.

Since initially all signals are band-pass filtered, the zero mean
assumption is naturally satisfied. Moreover, since the noise com-
ponent is not related with the moments, the EPs are triggered, we
can assume the noise vectors to be independent from the desired
signal. When parameter δ of set Ψt [defined by (3)] equals 0,
matrixA contains a single spatio–temporal vector for each target
flash. Thus, for a relatively high distances between the flashes,
we can also assume the noise vectors (wi) to be independent
from each other (and consequently uncorrelated).

Following, for δ = 0, we can expect effective suppression of
noise as a result of averaging. However, for δ > 0 matrix A
contains many successive signal vectors related with the same
target flash: {. . . ,x(k+J ·τ−1),x(k+J ·τ),x(k+J ·τ+1), . . .}, thus
we cannot expect the corresponding wi vectors to be uncor-
related; nevertheless, their averaging will result in a kind of
low-pass filtering, which can additionally decrease the level of
noise in the constructed pattern ā.

However, to avoid strong violation of the assumption concern-
ing the fixed shape of the desired component, which is expressed
by (18), the value of δ should not be large. Actually, it should
be emphasized that the concept of using δ > 0 can only be
applied because of the very low frequency content of the visual
EPs (which are additionally smoothed by the applied band-pass
filtering).
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