Mostrar el registro sencillo del ítem

dc.contributor.authorHerrera, María Camila
dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorMolina-Cabrera, Alexander
dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorGiral-Ramírez, Diego Armando
dc.date.accessioned2022-07-08T13:53:44Z
dc.date.available2022-07-08T13:53:44Z
dc.date.issued2021-06-30
dc.date.submitted2022-07-07
dc.identifier.citationHerrera, Maria & Montoya Giraldo, Oscar & Molina-Cabrera, Alexander & Grisales-Noreña, Luis & Giral-Ramirez, Diego. (2022). Convergence analysis of the triangular-based power flow method for AC distribution grids. International Journal of Electrical and Computer Engineering (IJECE). 12. 41. 10.11591/ijece.v12i1.pp41-49.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10705
dc.description.abstractThis paper addresses the convergence analysis of the triangular-based power flow (PF) method in alternating current radial distribution networks. The PF formulation is made via upper-triangular matrices, which enables finding a general iterative PF formula that does not require admittance matrix calculations. The convergence analysis of this iter ative formula is carried out by applying the Banach fixed-point theorem (BFPT), which allows demonstrating that under an adequate voltage profile the triangular-based PF always converges. Numerical validations are made, on the well-known 33 and 69 dis tribution networks test systems. Gauss-seidel, newton-raphson, and backward/forward PF methods are considered for the sake of comparison. All the simulations are carried out in MATLAB software.spa
dc.format.extent9 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceInternational Journal of Electrical and Computer Engineering (IJECE) - Vol. 12, No 1 (2022)spa
dc.titleConvergence analysis of the triangular-based power flow method for AC distribution gridsspa
dcterms.bibliographicCitationR. Poudineh, D. Peng, and S. Mirnezami, “Electricity networks,” Oxford Institute for Energy Studies, techreport, Dec. 2017.spa
dcterms.bibliographicCitationM. S. Rawat and S. Vadhera, “Probabilistic approach to determine penetration of Hybrid Renewable DGs in Distribution Network Based on Voltage Stability Index,” Arabian Journal for Science and Engineering, vol. 45, no. 3, pp. 1473–1498, jul 2019, doi: 10.1007/s13369-019-04023-1.spa
dcterms.bibliographicCitationO. D. Montoya, W. Gil-Gonzalez, and D. A. Giral, “On the matricial formulation of iterative sweep power flow for radial and meshed distribution networks with guarantee of convergence,” Applied Sciences, vol. 10, no. 17, Aug. 2020, Art. No. 5802, doi: 10.3390/app10175802.spa
dcterms.bibliographicCitationJ. A. D. Massignan, B. R. Pereira, and J. B. A. London, “Load flow calculation with voltage regulators Bidirectional Mode and Distributed Generation,” IEEE Transactions on Power Systems, vol. 32, no. 1, pp. 1576-1577, 2016, doi: 10.1109/TPWRS.2016.2576679.spa
dcterms.bibliographicCitationK. Balamurugan and D. Srinivasan, “Review of power flow studies on distribution network with distributed generation,” IEEE Ninth Int. Conf. on Power Electro. and Drive Sys., Dec. 2011, doi: 10.1109/PEDS.2011.614728.spa
dcterms.bibliographicCitationR. Rajaram, K. S. Kumar, and N. Rajasekar, “Power system reconfiguration in a radial distribution network for reducing losses and to improve voltage profile using modified plant growth simulation algorithm with distributed generation (DG),” Energy Reports, vol. 1, pp. 116–122, Nov. 2015, doi: 10.1016/j.egyr.2015.03.002spa
dcterms.bibliographicCitationM. W. Saddique, S. S. Haroon, S. Amin, A. R. Bhatti, I. A. Sajjad, and R. Liaqat, “Optimal placement and sizing of shunt capacitors in radial distribution system using polar bear optimization algorithm,” Arabian Journal for Science and Engineering, vol. 46, pp. 873-899, Jul. 2020, doi: 10.1007/s13369-020-04747-5.spa
dcterms.bibliographicCitationM. E. Nassar and M. Salama, “A novel branch-based power flow algorithm for islanded AC microgrids,” Electric Power Systems Research, vol. 146, pp. 51–62, May. 2017, doi: 10.1016/j.epsr.2017.01.019.spa
dcterms.bibliographicCitationT. Shen, Y. Li, and J. Xiang, “A graph-based power flow method for balanced distribution systems,” Energies, vol. 11, no. 3, Feb. 2018, Art. No. 511, doi: 10.3390/en11030511.spa
dcterms.bibliographicCitationM. C. Herrera-Bri˜nez, O. D. Montoya, L. Alvarado-Barrios, and H. R. Chamorro, “The equivalence between successive approximations and matricial load flow formulations,” Applied Sciences, vol. 11, no. 7, Mar. 2021, Art. No. 2905, doi: 10.3390/app11072905.spa
dcterms.bibliographicCitationS. H. Low, “Convex relaxation of optimal power flow-Part II: Exactness,” IEEE Trans. Control Netw. Syst, vol. 1, no. 2, pp. 177–189, Jun. 2014, doi: 10.1109/TCNS.2014.2323634.spa
dcterms.bibliographicCitationA. Marini, S. Mortazavi, L. Piegari, and M.-S. Ghazizadeh, “An efficient graph-based power flow algorithm for electrical distribution systems with a comprehensive modeling of distributed generations,” Electric Power Systems Research, vol. 170, pp. 229–243, May. 2019, doi: 10.1016/j.epsr.2018.12.026spa
dcterms.bibliographicCitationO. D. Montoya and W. Gil-Gonzalez, “On the numerical analysis based on successive approximations for power flow problems in AC distribution systems,” Electric Power Systems Research, vol. 187, Oct. 2020, Art. No. 106454, doi: 10.1016/j.epsr.2020.106454.spa
dcterms.bibliographicCitationJ. J. Grainger and W. D. Stevenson, “Power system analysis,” ser. McGraw-Hill series in electrical and computer engineering: Power and energy. McGraw-Hill, 2003.spa
dcterms.bibliographicCitation] T. Gonen, “Modern power system analysis,” CRC Press, 2016spa
dcterms.bibliographicCitationO. D. Montoya-Giraldo, W. J. Gil-Gonzalez, and A. Garces-Ruız, “Flujo de potencia optimo para redes radiales y enmalladas empleando programacion semidefinida,” TecnoLogicas, vol. 20, no. 40, pp. 29–42, Sep. 2017.spa
dcterms.bibliographicCitationS. H. Low, “Convex relaxation of optimal power flow Part I: Formulations and equivalence,” IEEE Trans. Control Netw. Syst, vol. 1, no. 1, pp. 15–27, Mar. 2014, doi: 10.1109/TCNS.2014.2309732.spa
dcterms.bibliographicCitationM. Milovanovic, J. Radosavljevic, and B. Perovic, “A backward/forward sweep power flow method for harmonic polluted radial distribution systems with distributed generation units,” International Transactions on Electrical Energy Systems, vol. 30, no. 5, Dec. 2019, doi: 10.1002/2050-7038.12310spa
dcterms.bibliographicCitationA. Garces, “A linear three-phase load flow for power distribution systems,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 827–828, Jan. 2016, doi: 10.1109/TPWRS.2015.2394296.spa
dcterms.bibliographicCitationO. D. Montoya, J. S. Giraldo, L. F. Grisales-Nore˜na, H. R. Chamorro, and L. Alvarado-Barrios, “Accurate and efficient derivativefree three-phase power flow method for unbalanced distribution networks,” Computation, vol. 9, no. 6, May. 2021, Art. No. 61, doi: 10.3390/computation9060061/.spa
dcterms.bibliographicCitationO. D. Montoya, L. F. Grisales-Norena, and W. Gil-Gonzalez, “Triangular matrix formulation for power flow analysis in radial DC resistive grids with CPLs,” IEEE Trans. Circuits Syst. II, vol. 67, no. 6, pp. 1094–1098, Jun. 2020, doi: 10.1109/TCSII.2019.2927290spa
dcterms.bibliographicCitationA. Garces, “Uniqueness of the power flow solutions in low voltage direct current grids,” Electr. Power Syst. Res, vol. 151, pp. 149–153, Oct. 2017, doi: 10.1016/j.epsr.2017.05.031.spa
dcterms.bibliographicCitationO. D. Montoya, W. Gil-Gonzalez, and L. Grisales-Nore˜na, “An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach,” Ain Shams Engineering Journal, vol. 11, no. 2, pp. 409–418, Jun. 2020, doi: 10.1016/j.asej.2019.08.011.spa
dcterms.bibliographicCitationD. V. Tien, R. Gono, and Z. Leonowicz, “A new approach newton-raphson Load flow analysis in power system networks with STATCOM,” in Lecture Notes in Electrical Engineering. Springer International Publishing, Apr. 2019, pp. 88–100, doi: 10.1007/978-3- 030-14907-9-10spa
dcterms.bibliographicCitationF. Milano, “Analogy and convergence of levenberg’s and lyapunov-Based methods for power flow analysis,” IEEE Transactions on Power Systems, vol. 31, no. 2, pp. 1663–1664, Mar. 2016, doi: 10.1109/TPWRS.2015.2415455spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.11591/ijece.v12i1.pp41-49
dc.subject.keywordsBanach fixed-point theoremspa
dc.subject.keywordsConvergence analysisspa
dc.subject.keywordsElectric distribution networksspa
dc.subject.keywordsTriangular-based power flow methodspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.