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ABSTRACT

This paper addresses the convergence analysis of the triangular-based power flow (PF)
method in alternating current radial distribution networks. The PF formulation is made
via upper-triangular matrices, which enables finding a general iterative PF formula that
does not require admittance matrix calculations. The convergence analysis of this iter-
ative formula is carried out by applying the Banach fixed-point theorem (BFPT), which
allows demonstrating that under an adequate voltage profile the triangular-based PF
always converges. Numerical validations are made, on the well-known 33 and 69 dis-
tribution networks test systems. Gauss-seidel, newton-raphson, and backward/forward
PF methods are considered for the sake of comparison. All the simulations are carried
out in MATLAB software.
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1. INTRODUCTION
Electrical distribution networks correspond to the part of a power system entrusted with providing

electrical service to all the end-users in electric distribution grids operated at medium- and low-voltage levels
[1], [2]. These grids are classically connected to substations that represent the interfaces with the power system
at transmission and sub-transmission levels [3], [4]. The main characteristic of a distribution network is its
typical radial topology, as this configuration facilitates minimizing investment costs [5]; furthermore, the radial
design simplifies the creation of protection schemes, since the current typically flows from the substation to the
loads [6], [7].

In the analysis of electrical systems, the concept of power flow (PF) emerges as the main tool to
know the network’s operative state under steady-state conditions [8], [9], i.e., voltage magnitudes and angles
in the nodes and current magnitudes and angles in lines [10], [11]. The PF corresponds to a set of nonlinear
equality restrictions that due to their complexity require iterative methods to find the numerical solution [12],
[13]. In the specialized literature, the problem of PF has been addressed with multiple methodologies that
include classical and accelerated gauss-seidel (GS) approaches and newton-raphson (NR) formulations [14],
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[15], and convex formulations via semi-definite programming and second-order cone programming [16], [17].
However, the radial topology of the network and the presence of only one voltage-controlled source offer a
particular structure which is taken into account for multiple PF in the literature; some of them are: successive
approximations [13], backward/forward [9], graph-based methods with incidence matrices [3], and triangular-
based approaches [12]. The main characteristic of these approaches is that they work directly with the nonlinear
structure of the problem by proposing a recursive formula that allows calculating the voltages in all the demand
nodes as a function of the power consumption [18], [19].

For some of these methods the convergence test is available in the literature, thereby ensuring that the
method always converges to the PF solution under well-defined demand conditions. Some of these methods are
GS [15], NR [14], successive approximations [13], and backward/forward [9] PF methods. For the triangular-
based PF method, however, the convergence demonstration has not yet been performed, which is a gap this
work tries to fill. The contributions of this work are: i) the analysis of convergence with the Banach fixed-point
theorem (BFPT) in single-phase AC distribution networks; and ii) an analytical comparison with classical
PF methods, which will provide evidence that the triangular-based PF method has lower processing times in
numerically solving the PF problem.

It is worth mentioning that the studied triangular-based PF problem for AC grids has been initially
proposed in [12] and [20] for three-phase unbalanced networks. However, a literature review provided no
evidence of any convergence test in single-phase equivalent distribution grids. For this reason, we focus on
such a convergence test by using the BFPT.

The rest of this document is structured as follows: section 2 presents the mathematical formulation of
the triangular-based PF problem for electrical distribution systems by using a small test feeder working as an
application example. Section 3 shows the convergence test via BFPT by exploiting the characteristics related
with the diagonally dominant properties of the impedance matrix that relates all the nodes of the system. Section
4 describes the main features of the electrical distribution test feeders. Section 5 presents the computational
validations, including the convergence test evaluation and the comparison with classical PF methodologies
reported in the literature. Finally, section 6 offers the concluding remarks derived from this work and some
possible future lines of investigation.

2. TRIANGULAR-BASED PF FORMULATION
This method is based on an upper-triangular matrix, which is set up using the relation between current

flow through the lines and the current demand on the network nodes. The matrix is denoted using the letter T ,
and the general description is in [12], [21]. To clarify the basis of the method formulation and the use of the T
matrix, we use a small electrical system constituted of 7 nodes and 6 lines and an operative voltage of 23 kV
in the slack node, which is located at node 1. The configuration of this example is depicted in Figure 1. In
addition, the parametric information of this test feeder is reported in Table 1.

Figure 1. Schematic connection between nodes in 7-node test feeder used in the Triangular-based PF
formulation example
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Table 1. Electrical parameters of the 7-node test feeder used in the triangular-based PF formulation example
Ni Nj Rij (Ω) Xij (Ω) Pj (kW) Qj (kVAr)
1 2 0.5025 0.3025 1000 600
2 3 0.4020 0.2510 900 500
3 4 0.3660 0.1864 2500 1200
2 5 0.3840 0.1965 1200 950
5 6 0.8190 0.7050 1050 780
2 7 0.2872 0.4088 2000 1150

Once the values are organized as in the Table 1, the procedure for the the upper-triangular PF for-
mulation is as follows: First, the T matrix is created for the network; to do so it is necessary to establish the
relation among the currents through branches and the currents injected to the nodes. The relation between
branch current ib and the load consumption of each node In without taking into account the current of the slack
node must be determined. For the 7-node test feeder, the flow direction of the currents was taken as shown in
Figure 1, obtaining the set of (1).

il1 = I2 + I3 + I4 + I5 + I6 + I7
il2 = I3 + I4
il3 = I4
il4 = I5 + I6
il5 = I6
il6 = I7

(1)

The second step is to change the set of equations as shown in (1) to matrix form as in (2); the matrix
tying up the currents of the branches (ib) and the currents of the nodes (In) is the upper-triangular T matrix.
Then we can simplify (2) to a single equation as defined in (3).

il1
il2
il3
il4
il5
il6

 =


1 1 1 1 1 1
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 1 1 0
0 0 0 0 1 0
0 0 0 0 0 1




I1
I2
I3
I4
I5
I6

 (2)

ib = TIn (3)

Similarly, we can find a relation between voltages of the nodes and branches by writing down the branch
voltages in between any node and the slack node. For the proposed example, the set of (4) show the related
voltages of the network, where V0 is the voltage of the slack node.

V2 = V0 − vl1
V3 = V0 − vl1 − vl2
V4 = V0 − vl1 − vl2 − vl3
V5 = V0 − vl1 − vl4
V6 = V0 − vl1 − vl4 − vl5
V7 = V0 − vl1 − vl6

(4)

Now, we should rewrite these equations in matrix form as shown in (5); once again the matrix tying
up the voltages of the branches vb and voltages of the nodes Vn is T , but this time in its transposed form. These
relations lead us to (6), which is the equation for the voltages of the network.

V2

V3

V4

V5

V6

V7

 =


1
1
1
1
1
1

V0 −


1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 0 0 1 0 0
1 0 0 1 1 0
1 0 0 0 0 1




vl1
vl2
vl3
vl4
vl5
vl6

 (5)
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Vn = 1V0 − TT vb (6)

It is also necessary to find an equation describing the voltages of the branches; one way to do so is by mul-
tiplying the impedance of each branch with the current flowing through them, Zb is a diagonal matrix formed
with branch impedances of the network. The impedance matrix Zb for the 7-node test feeder example is shown
in (7).

0.5025 + j0.3025 · · · 0
...

. . .
...

0 · · · 0.2872 + j0.4088

 (7)

In (8) describes the relation between Zb and the voltages of the branches (vb).

vb = Zbib (8)

The next step is to use (3) in (8) to obtain (9). Then, replacing (9) in (6) we get the equation for the triangular-
based PF method, as displayed in (10).

vb = ZbTIn (9)

Vn = 1V0 − TTZbTIn (10)

The main idea of this kind of load flow formulation is to find the voltage of all nodes in the network
with information provided by the system itself. If we take a closer look at (10), all the variables required
to calculate Vn can be defined by the details in Table 1, but In has to be rewritten in known terms. In (11)
represents the net power demanded for any node. This one is listed in the information provided for the network;
here, we need to rewrite it in matrix form so we can use it. In (12) shows a way to do so [15].

Sn = VnI
∗
n (11)

In = (diag(V ∗n ))
−1
S∗n (12)

In (12) the term (diag(V ∗n ))
−1 is the inverse of a diagonal matrix with conjugated nodal voltages, and as

mentioned earlier S∗n is the power demand for each node in its conjugated form.
The final equation to solve load flow based on an upper-triangular matrix is defined in (13); this is a

nonlinear equation that requires an iterative process to be solved.

Vn = 1V0 − TTZbT (diag(V ∗n ))
−1
S∗n (13)

The solution of expression (13) is found by adding an iterative counter t to the nodal voltages as (14):

Vn = 1V0 − Zn (diag(V ∗n ))
−1
S∗n (14)

where, Zn = TTZbT , and the iterative process is carried out until the desired convergence is reached, i.e.,∣∣∣∣V t+1
n

∣∣− |V t
n|
∣∣ ≤ ε, where ε is the tolerance error, which is typically defined in the PF literature as 1× 10−10

[20].

3. CONVERGENCE ANALYSIS
The convergence test presented in this section is based on the demonstration of the convergence for

the successive approximations presented in [3]. For applying it on the iterative upper-triangular PF defined in
(13), let us take into account the assumptions presented [22]:
Assumption 1 : The total connected load of the distribution grid does not produce a voltage collapse, i.e., the
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power flow equations have a solution.
Assumption 2 : There is a positive lower voltage limit for all the voltages in the grid, V min > 0, which is
assigned by the regulatory policies and utility practices.
Assumption 3 : The component of the impedance matrix that relates the demands among them, i.e., Zn, is
diagonally dominant, which means that

∣∣Znjj

∣∣ ≥ ∣∣Znjk

∣∣ , ∀j 6= k is always guaranteed.
To demonstrate the properties of convergence of the triangular-based PF approach defined by (13), let

us show the general definition of the BFPT as presented below [9], [22].
Lemma 1 [Banach fixed-point theorem]: The iterative formula defined by (13) is stable and it is a contraction
map that takes the following structure.

V t+1
n = g

(
V t
n

)
, (15)

For some V that complies with Assumption 3. independent of the initial point, i.e., V 0, such that;∣∣∣∣g (V 0
n

)
− g (U)

∣∣∣∣ ≤ γ ∣∣∣∣V 0 − U
∣∣∣∣ (16)

where U represents the solution of the PF problem, and γ is a real number in the interval [0, 1].
Proof: The recursive formula for the triangular-based PF method presented in (13) can be rewritten as presented
in (17):

V t+1
n = g

(
V t
n

)
= 1V0 − Zn

[
S?
ni

V t,?
ni

]T
i∈ΩS

(17)

where ΩS corresponds to the set that contains all the demand buses.
Additionally, considering the structure of the BFPT, it is possible to conclude that the solution of the

PF problem, i.e., U , complies with U = g (U), and this corresponds to a unique solution if and only if g (U)
represents a contraction mapping on Vn,∣∣∣∣V t+1

n − U
∣∣∣∣ =

∣∣∣∣g (V t+1
n

)
− g (U)

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣ZnS

?
n

[
1

U?
i

− 1

V t,?
ni

]T
i∈ΩS

∣∣∣∣∣
∣∣∣∣∣

||ZnS
?
n||

∣∣∣∣∣
∣∣∣∣∣
[
V t,?
ni
− U?

i

U?
i V

t,?
ni

]T
i∈ΩS

∣∣∣∣∣
∣∣∣∣∣

≤ γ
∣∣∣∣V t

n − U
∣∣∣∣ ,

(18)

with

γ =
||ZnS

?
n||

(V min)
2 . (19)

Now, taking into account assumption 3, which is associated with the nature of the impedance matrix,
in (19) can be rewritten as (20);

γ = max
i∈ΩS

{
|Znii |

∣∣S?
ni

∣∣
(V min)

2

}
. (20)

It is worth mentioning that, taking into account the mathematical structure defined in (20) and that Znii
repre-

sents the equivalent impedance at node i (i.e., Thévenin equivalent), the next relation is attained.

γ = max
i∈ΩS


|S?ni
|

V min

V min

|Znii |

 , (21)

Where we can guarantee that 0 ≤ γ ≤ 1, as the denominator in (21) is the lower short-circuit current and the
numerator represents the maximum consumption current, which in all the cases is lower than any short-circuit
current that can appear during normal operating conditions. This demonstrates that the recursive triangular-
based PF (13) solves the PF problem, which completes the proof [9], [20].
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4. TEST SYSTEMS
This section presents the electrical configuration, as well as the test system information, of the radial

distribution systems employed in this work for validating the triangular-based PF method. Two test systems
are employed: the 33-node test system and the 69-node test feeder, which have radial structure. The complete
information on these test systems is presented below. Note that for both test feeders we consider 12.66 kV and
1 MW of voltage and power bases, respectively.

4.1. 33-node test feeder
This electrical test feeder is constituted of 32 lines and 33 nodes with radial structure, and is operated

with 12.66 kV at the substation bus. The schematic connection among nodes in this distribution grid is pre-
sented in Figure 2. The total demand of this system is 3715 kW and 2300 kVAr, which produces 210.9876 kW
of power losses. For data of this test feeder regarding loads and branch parameters please consult [23].

Figure 2. Schematic representation of the connection between nodes in the 33-node test feeder

4.2. 69-node test feeder
This electrical test feeder is composed of 68 lines and 69 nodes with radial structure, and is oper-

ated with 12.66 kV at the substation bus. The schematic connection among nodes in this distribution grid
is presented in Figure 3. The total demand of this system is 3890.7 kW and 2693.6 kVAr, which produces
225.0718 kW of power losses. For data of this test feeder regarding loads and branch parameters please consult
[23].

Figure 3. Schematic interconnection among nodes in the 69-node test system

5. COMPUTATIONAL VALIDATION
To validate the studied triangular-based PF for radial distribution networks with guarantee of conver-

gence under well defined voltage conditions, we compare it with six classical methodologies reported in the
literature: i) classical GS [14], ii) accelerated version of GS (AGS) [15], iii) NR [24], iv) Levenberg-marquardt
(LM) [25], v) successive approximations (SA) [13], and vi) matricial backward-forward (MBF) [9], [3]. To
perform a fair comparison, all these methods were run 1000 times to determine their computational effort (pro-
cessing times) by considering a maximum of 100 iterations and a tolerance error of 1 × 10−10. This process
was done with MATLAB 2020a on a laptop with Intel CoreTM i5-8300 2.3 Ghz and 4 GB RAM running a
64-bit.
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In Table 2 is reported the numerical performance of the studied triangular-based PF and the other
compared methods. From the results reported in this table we can observe that: i) The GS and its accelerated
versions take higher computational times and number of iterations. This situation is attributable to the fact
that these methods do not use matricial representations and they work with single equations, which implies
that more calculations are needed at each iteration; ii) The NR and the Levenberg-Marquardt methods use a
lower number of iterations to reach the PF solution. This is because these methods use Jacobian matrices in
their formulations, which reduce the number of iterations in the searching process since information regarding
derivatives is included in them. However, the inversion requirements of the Jacobian matrices at each iteration
increase their processing times considerably when the size of the distribution network starts to increase; iii)
The successive approximation, matricial backward/forward, and the triangular-based PF methods have the best
computation performance in both test feeders, with the triangular method being the fastest one. In addition,
the three methodologies are stabilized at the same number of iterations (10 iterations for both test feeders).
This behavior is caused by the fact that these three methods work only with a reformulation of the power
balance equations in complex form, and they do not include derivatives in their formulations; and iv) The main
advantage of using the studied triangular-based PF formulation for PF calculations in AC radial distribution
networks is that this method is faster compared with its alternatives. This is attributable to the fact that this PF
formulation (13) does not intervene in any inverse of the admittance matrix, which reduces the computational
effort during the iterative procedure. Figure 4 presents the voltage behaviors in both test feeders for the studied
TB and MBF PF methods.

Table 2. Numerical results in the 33- and 69-node test feeders for the studied and comparative methods
Method Proc. Time [ms] Iterations Losses [kW]

33-node test feeder GS 1148.422 2313 210.987
AGS (α = 1.82) 768.921 227 210.987

NR 3.006 5 210.987
LM 4.251 5 210.987
SA 0.931 10 210.987

MBF 0.936 10 210.987
TB 0.717 10 210.987

69-node test feeder GS 8430.077 32687 225.071
AGS (α = 1.92) 480.186 1628 225.071

NR 14.304 5 225.071
LM 14.704 5 225.071
SA 3.329 10 225.071

MBF 4.252 10 225.071
TB 2.522 10 225.071

Figure 4. Voltage profiles; (a) 33-bus electrical network, and (b) 33-bus electrical network

Note that in all the compared methods and in the studied triangular-based PF formulation, the power
solution is identical, since the estimated power losses are the same for all the methods (see the last column
in Table 2). However, the selection of each of these methods depends on the analytical requirements, it being
always more attractive to use the speediest one, since it can be embedded in real-time applications. We can
note from Figure 4 that these curves confirm that, in a numerical sense, both PF methods present the same
performance regarding voltage calculations. However, as shown in Table 2, the main advantage of the TB PF
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approach when compared to the MBF method is its quicker calculation in radial distribution networks, added
to the fact that this method guarantees convergence on well-defined voltage conditions as demonstrated in
section 3.

Finally, to show that the studied TB power flow method ensures convergence in both electrical dis-
tribution test feeders, Figure 5 presents the demeanor of the γ−coefficient. From Figure 5, we confirm that
hypothesis (21) is guaranteed, and the studied TB power ensures the numerical solution of the PF problem in
AC networks. For the 33-node test feeder, the maximum γ−coefficient is presented at node 30 with a numerical
value of 0.027, while in the case of the 69-node test feeder, this value happens at node 61 with a numerical
value of 0.062. These numbers make easy the verification that γ is contained in the interval [0, 1] for both test
feeders.

Figure 5. γ−coefficient performance; (a) 33-bus electrical network, and (b) 69-bus electrical network

6. CONCLUSION AND FUTURE WORK
This paper has addressed the convergence analysis of a PF method named as a triangular-based PF

method for radial AC distribution networks. This PF formulation uses an upper-triangular matrix that relates
branch and nodal currents to obtain a recursive formula that relates nodal voltages with constant power con-
sumption, which does not require any matrix inversion, thus reducing the computational time in comparison
with classical PF formulations. The BFPT was employed to demonstrate the convergence of this PF method
based on the diagonally dominant properties of the Zn impedance matrix. Numerical results showed that for
both test feeders the γ-coefficient was always lower than unity, which helped confirm that the triangular-based
PF is itself a contraction mapping. A possible future work will be the usage of the triangular-based PF for-
mulation embedded in optimization procedures to address different distribution problems such as the optimal
location of shunt devices (i.e., capacitors, distributed generators, and filters) to improve the solution times of
these problems.
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