Show simple item record

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorGil-González, Walter
dc.contributor.authorGarcés, Alejandro
dc.identifier.citationMontoya, O.D.; Gil-González, W.; Garcés, A. On the Conic Convex Approximation to Locate and Size Fixed-Step Capacitor Banks in Distribution Networks. Computation 2022, 10, 32.
dc.description.abstractThe problem of the optimal siting and sizing of fixed-step capacitor banks is studied in this research from the standpoint of convex optimization. This problem is formulated through a mixed-integer nonlinear programming (MINLP) model, in which its binary/integer variables are related to the nodes where the capacitors will be installed. Simultaneously, the continuous variables are mainly associated with the power flow solution. The main contribution of this research is the reformulation of the exact MINLP model through a mixed-integer second-order cone programming model (MI-SOCP). This mixed-integer conic model maintains the nonlinearities of the original MINLP model; however, it can be solved efficiently with the branch & bound method combined with the interior point method adapted for conic programming models. The main advantage of the proposed MI-SOCP model is the possibility of finding the global optimum based on the convex nature of the power flow problem for each binary/integer variable combination in the branch & bound search tree. The numerical results in the IEEE 33- and IEEE 69-bus systems demonstrate the effectiveness and robustness of the proposed MI-SOCP model compared to different metaheuristic approaches. The MISOCP model finds the final power losses of the IEEE 33- and IEEE 69-bus systems of 138.416 kW and 145.397 kW, which improves the best literature results reached with the flower pollination algorithm, i.e., 139.075 kW, and 145.860 kW, respectively. The simulations are carried out in MATLAB software using its convex optimizer tool known as CVX with the Gurobi
dc.format.extent14 Páginas
dc.sourceComputation - Vol. 10 N° 8 (2022).spa
dc.titleOn the Conic Convex Approximation to Locate and Size Fixed-Step Capacitor Banks in Distribution Networksspa
dcterms.bibliographicCitationRidzuan, M.I.M.; Fauzi, N.F.M.; Roslan, N.N.R.; Saad, N.M. Urban and rural medium voltage networks reliability assessment. SN Appl. Sci. 2020, 2, 241spa
dcterms.bibliographicCitationKien, L.C.; Nguyen, T.T.; Pham, T.D.; Nguyen, T.T. Cost reduction for energy loss and capacitor investment in radial distribution networks applying novel algorithms. Neural Comput. Appl. 2021, 33, 15495–
dcterms.bibliographicCitationRiaño, F.E.; Cruz, J.F.; Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L. Reduction of Losses and Operating Costs in Distribution Networks Using a Genetic Algorithm and Mathematical Optimization. Electronics 2021, 10, 419spa
dcterms.bibliographicCitationLavorato, M.; Franco, J.F.; Rider, M.J.; Romero, R. Imposing Radiality Constraints in Distribution System Optimization Problems. IEEE Trans. Power Syst. 2012, 27, 172–
dcterms.bibliographicCitationPaz-Rodríguez, A.; Castro-Ordoñez, J.F.; Montoya, O.D.; Giral-Ramírez, D.A. Optimal Integration of Photovoltaic Sources in Distribution Networks for Daily Energy Losses Minimization Using the Vortex Search Algorithm. Appl. Sci. 2021, 11, 4418spa
dcterms.bibliographicCitationÁguila, A.; Ortiz, L.; Orizondo, R.; López, G. Optimal location and dimensioning of capacitors in microgrids using a multicriteria decision algorithm. Heliyon 2021, 7, e08061spa
dcterms.bibliographicCitationMadruga, E.P.; Canha, L.N. Allocation and integrated configuration of capacitor banks and voltage regulators considering multi-objective variables in smart grid distribution system. In Proceedings of the 2010 9th IEEE/IAS International Conference on Industry Applications—INDUSCON 2010, Sao Paulo, Brazil, 8–10 November 2010spa
dcterms.bibliographicCitationPareja, L.A.G.; Lezama, J.M.L.; Carmona, O.G. Optimal Placement of Capacitors, Voltage Regulators, and Distributed Generators in Electric Power Distribution Systems. Ingeniería 2020, 25, 334–354spa
dcterms.bibliographicCitationMishra, S.; Das, D.; Paul, S. A comprehensive review on power distribution network reconfiguration. Energy Syst. 2016, 8, 227–
dcterms.bibliographicCitationDhivya, S.; Arul, R. Demand Side Management Studies on Distributed Energy Resources: A Survey. Trans. Energy Syst. Eng. Appl. 2021, 2, 17–31. [spa
dcterms.bibliographicCitationValencia, A.; Hincapie, R.A.; Gallego, R.A. Optimal location, selection, and operation of battery energy storage systems and renewable distributed generation in medium–low voltage distribution networks. J. Energy Storage 2021, 34, 102158spa
dcterms.bibliographicCitationSirjani, R.; Jordehi, A.R. Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review. Renew. Sustain. Energy Rev. 2017, 77, 688–
dcterms.bibliographicCitation. Tamilselvan, V.; Jayabarathi, T.; Raghunathan, T.; Yang, X.S. Optimal capacitor placement in radial distribution systems using flower pollination algorithm. Alex. Eng. J. 2018, 57, 2775–
dcterms.bibliographicCitationGil-González, W.; Montoya, O.D.; Rajagopalan, A.; Grisales-Noreña, L.F.; Hernández, J.C. Optimal Selection and Location of Fixed-Step Capacitor Banks in Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Energies 2020, 13, 4914spa
dcterms.bibliographicCitationGriot, S.; Moreau, A. Vacuum circuit breakers electrical life for shunt capacitor switching. In Proceedings of the 24th ISDEIV 2010, Braunschweig, Germany, 30 August–3 September
dcterms.bibliographicCitationVelásquez, R.M.A.; Lara, J.V.M. Reliability, availability and maintainability study for failure analysis in series capacitor bank. Eng. Fail. Anal. 2018, 86, 158–
dcterms.bibliographicCitationBenson, H.Y.; Sa ˘glam, Ü. Mixed-Integer Second-Order Cone Programming: A Survey. In Theory Driven by Influential Applications; INFORMS: Catonsville, MD, USA, 2013; pp. 13–36spa
dcterms.bibliographicCitationAbdelaziz, A.Y.; Ali, E.S.; Elazim, S.M.A. Flower Pollination Algorithm for Optimal Capacitor Placement and Sizing in Distribution Systems. Electr. Power Components Syst. 2016, 44, 544–
dcterms.bibliographicCitationAbril, I.P. Capacitors placement in distribution systems with nonlinear load by using the variables’ inclusion and interchange algorithm. Dyna 2021, 88, 13–22spa
dcterms.bibliographicCitationAugugliaro, A.; Dusonchet, L.; Favuzza, S.; Ippolito, M.G.; Mangione, S.; Sanseverino, E.R. A Modified Genetic Algorithm for Optimal Allocation of Capacitor Banks in MV Distribution Networks. Intell. Ind. Syst. 2015, 1, 201–
dcterms.bibliographicCitationEl-Fergany, A.A.; Abdelaziz, A.Y. Capacitor placement for net saving maximization and system stability enhancement in distribution networks using artificial bee colony-based approach. Int. J. Electr. Power Energy Syst. 2014, 54, 235–
dcterms.bibliographicCitationPrakash, K.; Sydulu, M. Particle Swarm Optimization Based Capacitor Placement on Radial Distribution Systems. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007spa
dcterms.bibliographicCitationOgita, Y.; Mori, H. Parallel Dual Tabu Search for Capacitor Placement in Smart Grids. Procedia Comput. Sci. 2012, 12, 307–
dcterms.bibliographicCitationShuaib, Y.M.; Kalavathi, M.S.; Rajan, C.C.A. Optimal capacitor placement in radial distribution system using Gravitational Search Algorithm. Int. J. Electr. Power Energy Syst. 2015, 64, 384–
dcterms.bibliographicCitationDevabalaji, K.; Yuvaraj, T.; Ravi, K. An efficient method for solving the optimal sitting and sizing problem of capacitor banks based on cuckoo search algorithm. Ain Shams Eng. J. 2018, 9, 589–
dcterms.bibliographicCitationHeliodore, F.; Nakib, A.; Ismail, B.; Ouchraa, S.; Schmitt, L. Performance Evaluation of Metaheuristics. In Metaheuristics for Intelligent Electrical Networks; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 43–
dcterms.bibliographicCitationRocktäschel, S. A basic Branch-and-Bound algorithm for (MOMICP). In A Branch-and-Bound Algorithm for Multiobjective Mixedinteger Convex Optimization; Springer Fachmedien Wiesbaden: Berlin/Heidelberg, Germany, 2020; pp. 17–39spa
dcterms.bibliographicCitationBorchers, B.; Mitchell, J.E. An improved branch and bound algorithm for mixed integer nonlinear programs. Comput. Oper. Res. 1994, 21, 359–367spa
dcterms.bibliographicCitationYUAN, Z.; Hesamzadeh, M.R. Second-order cone AC optimal power flow: Convex relaxations and feasible solutions. J. Mod Power Syst. Clean Energy 2018, 7, 268–
dcterms.bibliographicCitationKaur, S.; Kumbhar, G.; Sharma, J. A MINLP technique for optimal placement of multiple DG units in distribution systems. Int. J. Electr. Power Energy Syst. 2014, 63, 609–
dcterms.bibliographicCitationKumar, D.; Singh, A.; Kansal, S. To Improve the Voltage Profile of Distribution System with the Optimal Placement of Capacitor. Indian J. Sci. Technol. 2017, 10, 1–7spa
dcterms.bibliographicCitationMolina-Martin, F.; Montoya, O.D.; Grisales-Noreña, L.F.; Hernández, J.C. A Mixed-Integer Conic Formulation for Optimal Placement and Dimensioning of DGs in DC Distribution Networks. Electronics 2021, 10, 176spa
dcterms.bibliographicCitationGarces, A.; Gil-González, W.; Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L. A Mixed-Integer Quadratic Formulation of the Phase-Balancing Problem in Residential Microgrids. Appl. Sci. 2021, 11,
dcterms.bibliographicCitation. Alizadeh, F.; Goldfarb, D. Second-order cone programming. Math. Program. 2003, 95, 3–51. [spa
dcterms.bibliographicCitationKarmarkar, N. A new polynomial-time algorithm for linear programming. Combinatorica 1984, 4, 373–395spa
dcterms.bibliographicCitationAtamtürk, A.; Gómez, A. Submodularity in Conic Quadratic Mixed Optimization. Oper. Res.
dcterms.bibliographicCitation. Grant, M.; Boyd, S. CVX: Matlab Software for Disciplined Convex Programming, Version 2.1. 2014. Available online: http: // (accessed on 3 July 2021).spa
dcterms.bibliographicCitationAbul’Wafa, A.R. Optimal capacitor allocation in radial distribution systems for loss reduction: A two stage method. Electr. Power Syst. Res. 2013, 95, 168–
dcterms.bibliographicCitationAbul’Wafa, A.R. Optimal capacitor placement for enhancing voltage stability in distribution systems using analytical algorithm and Fuzzy-Real Coded GA. Int. J. Electr. Power Energy Syst. 2014, 55, 246–
dcterms.bibliographicCitationSultana, S.; Roy, P.K. Optimal capacitor placement in radial distribution systems using teaching learning based optimization. Int. J. Electr. Power Energy Syst. 2014, 54, 387–
dc.subject.keywordsCapacitor banksspa
dc.subject.keywordsDistribution networksspa
dc.subject.keywordsSecond-order cone programming modelspa
dc.subject.keywordsPower losses minimizationspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa

Files in this item


This item appears in the following Collection(s)

Show simple item record
Except where otherwise noted, this item's license is described as

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.