Resumen
The problem of the optimal siting and sizing of fixed-step capacitor banks is studied in
this research from the standpoint of convex optimization. This problem is formulated through a mixed-integer nonlinear programming (MINLP) model, in which its binary/integer variables are related to the nodes where the capacitors will be installed. Simultaneously, the continuous variables are mainly associated with the power flow solution. The main contribution of this research is the reformulation of the exact MINLP model through a mixed-integer second-order cone programming model (MI-SOCP). This mixed-integer conic model maintains the nonlinearities of the original MINLP
model; however, it can be solved efficiently with the branch & bound method combined with the interior point method adapted for conic programming models. The main advantage of the proposed MI-SOCP model is the possibility of finding the global optimum based on the convex nature of the power flow problem for each binary/integer variable combination in the branch & bound search tree. The numerical results in the IEEE 33- and IEEE 69-bus systems demonstrate the effectiveness and robustness of the proposed MI-SOCP model compared to different metaheuristic approaches. The MISOCP model finds the final power losses of the IEEE 33- and IEEE 69-bus systems of 138.416 kW and 145.397 kW, which improves the best literature results reached with the flower pollination algorithm, i.e., 139.075 kW, and 145.860 kW, respectively. The simulations are carried out in MATLAB software using its convex optimizer tool known as CVX with the Gurobi solver.