Mostrar el registro sencillo del ítem

dc.contributor.authorMuentes Acevedo, Jeovanny
dc.coverage.spatialColombia
dc.date.accessioned2022-02-08T12:30:31Z
dc.date.available2022-02-08T12:30:31Z
dc.date.issued2021-11-02
dc.date.submitted2022-02-04
dc.identifier.citationAcevedo, Jeovanny De Jesus. (2022). Genericity of Continuous Maps with Positive Metric Mean Dimension. Results in Mathematics. 77. 10.1007/s00025-021-01513-3.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10441
dc.description.abstractM. Gromov introduced the mean dimension for a continuous map in the late 1990’s, which is an invariant under topological conjugacy. On the other hand, the notion of metric mean dimension for a dynamical system was introduced by Lindenstrauss and Weiss in 2000 and this refines the topological entropy for dynamical systems with infinite topological entropy. In this paper we will show if N is an n dimensional compact riemannian manifold then, for any a ∈ [0, n], the set consisting of continuous maps with metric mean dimension equal to a is dense in C0(N) and for a = n this set is residual. Furthermore, we prove some results related to the existence and, density of continuous maps, defined on Cantor sets, with positive metric mean dimension and also continous maps, defined on product spaces, with positive mean dimension.spa
dc.format.extent30 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceResults in Mathematics, vol. 77, N° 2 (2022)spa
dc.titleGenericity of Continuous Maps with Positive Metric Mean Dimensionspa
dcterms.bibliographicCitationArtin, M., Mazur, B.: On periodic points. Ann. Math., 82–99 (1965)spa
dcterms.bibliographicCitationBlock, L.: Noncontinuity of topological entropy of maps of the Cantor set and of the interval. Proc. Am. Math. Soc. 50(1), 388–393 (1975)spa
dcterms.bibliographicCitationBobok, J., Zindulka, O.: Topological entropy on zero-dimensional spaces. Fundam. Math. 162(3), 233–249 (1999)spa
dcterms.bibliographicCitationCarvalho, M., Rodrigues, F.B., Varandas, P.: Generic homeomorphisms have full metric mean dimension. Ergodic Theory Dyn. Syst., 1–25 (2019)spa
dcterms.bibliographicCitationDe Melo, W., Van Sebastian, S.: One-Dimensional Dynamics, vol. 25. Springer, Berlin (2012)spa
dcterms.bibliographicCitationdo Carmo., M.P.: Geometria riemanniana. Instituto de Matem´atica Pura e Aplicada (2008)spa
dcterms.bibliographicCitationEngelking, R.: “General Topology. Heldermann, Berlin.” MR1039321 (91c: 54001): 529 (1989)spa
dcterms.bibliographicCitationFalconer, K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, Hoboken (2004)spa
dcterms.bibliographicCitationGromov, M.: Topological invariants of dynamical systems and spaces of holomorphic maps: I. Math. Phys. Anal. Geom. 2(4), 323–415 (1999)spa
dcterms.bibliographicCitationGutman, Y.: Embedding topological dynamical systems with periodic points in cubical shifts. Ergodic Theory Dyn. Syst. 37(2), 512–538 (2017)spa
dcterms.bibliographicCitationGutman, Y., Tsukamoto, M.: Embedding minimal dynamical systems into Hilbert cubes. Invent. Math. 221(1), 113–166 (2020)spa
dcterms.bibliographicCitationHurley, M.: On proofs of the C0 general density theorem. Proc. Am. Math. Soc. 124(4), 1305–1309 (1996)spa
dcterms.bibliographicCitationJin, L., Yixiao, Q.: Mean dimension of product spaces: a fundamental formula. arXiv preprint arXiv:2102.10358 (2021)spa
dcterms.bibliographicCitationLindenstrauss, E.: Mean dimension, small entropy factors and an embedding theorem. Publications Math´ematiques de l‘Institut des Hautes Etudes Scientifiques ´ 89(1), 227–262 (1999)spa
dcterms.bibliographicCitation] Lindenstrauss, E., Weiss, B.: Mean topological dimension. Israel J. Math. 115(1), 1–24 (2000)spa
dcterms.bibliographicCitationLindenstrauss, E., Tsukamoto, M.: From rate distortion theory to metric mean dimension: variational principle. IEEE Trans. Inf. Theory 64(5), 3590–3609 (2018)spa
dcterms.bibliographicCitationLindenstrauss, E., Tsukamoto, M.: Mean dimension and an embedding problem: an example. Israel J. Math. 199(2), 573–584 (2014)spa
dcterms.bibliographicCitationMisiurewicz, M.: Horseshoes for Continuous Mappings of an Interval. Dynamical Systems, pp. 125–135. Springer, Berlin (2010)spa
dcterms.bibliographicCitationNewhouse, S.E.: Continuity properties of entropy. Ann. Math. 129(1), 215–235 (1989)spa
dcterms.bibliographicCitationRodrigues, F.B., Jeovanny, M.A.: Mean dimension and metric mean dimension for non-autonomous dynamical systems. J. Dyn. Control Syst. 1–27 (2021)spa
dcterms.bibliographicCitationTsukamoto, M.: Mean dimension of full shifts. Israel J. Math. 230(1), 183–193 (2019)spa
dcterms.bibliographicCitationVelozo, A., Renato, V.: Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv preprint arXiv:1707.05762 (2017)spa
dcterms.bibliographicCitationWei, C., Wen, S., Wen, Z.: Remarks on dimensions of Cartesian product sets. Fractals 24(03), 1650031 (2016)spa
dcterms.bibliographicCitationYano, K.: A remark on the topological entropy of homeomorphisms. Invent. Math. 59(3), 215–220 (1980)spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1007/s00025-021-01513-3
dc.subject.keywordsMean dimensionspa
dc.subject.keywordsMetric mean dimensionspa
dc.subject.keywordsTopological entropyspa
dc.subject.keywordsBox dimensionspa
dc.subject.keywordsHausdorff dimensionspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.