Mostrar el registro sencillo del ítem

dc.contributor.authorPayares, Esteban
dc.contributor.authorMartínez-Santos, Juan Carlos
dc.date.accessioned2022-01-28T20:08:39Z
dc.date.available2022-01-28T20:08:39Z
dc.date.issued2021-03-01
dc.date.submitted2022-01-28
dc.identifier.citationE. D. Payares, J. C. Martinez-Santos, "Quantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overview," Proc. SPIE 11699, Quantum Computing, Communication, and Simulation, 116990B (5 March 2021); doi: 10.1117/12.2593297spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10426
dc.description.abstractIn recent years, we have seen an increase in computer attacks through our communication networks worldwide, whether due to cybersecurity systems' vulnerability or their absence. This paper presents three quantum models to detect distributed denial of service attacks. We compare Quantum Support Vector Machines, hybrid Quantum- Classical Neural Networks, and a two-circuit ensemble model running parallel on two quantum processing units. Our work demonstrates quantum models' e ectiveness in supporting current and future cybersecurity systems by obtaining performances close to 100%, being 96% the worst-case scenario. It compares our models' performance in terms of accuracy and consumption of computational resources.spa
dc.format.extent11 Páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceQuantum Computing, Communication, and Simulationspa
dc.titleQuantum machine learning for intrusion detection of distributed denial of service attacks: a comparative overviewspa
dcterms.bibliographicCitationHavenstein, C., Thomas, D., and Chandrasekaran, S., \Comparisons of Performance between Quantum and Classical Machine Learning," SMU Data Science Review 1 (Jan. 2019).spa
dcterms.bibliographicCitationKilloran, N., Bromley, T. R., Arrazola, J. M., Schuld, M., Quesada, N., and Lloyd, S., \Continuous-variable quantum neural networks," Physical Review Research 1, 033063 (Oct. 2019).spa
dcterms.bibliographicCitationHavl cek, V., C orcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., and Gambetta, J. M., \Supervised learning with quantum-enhanced feature spaces," Nature 567, 209{212 (Mar. 2019).spa
dcterms.bibliographicCitationBiamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., and Lloyd, S., \Quantum machine learning," Nature 549, 195{202 (Sept. 2017).spa
dcterms.bibliographicCitationTorlai, G. and Melko, R. G., \Machine-Learning Quantum States in the NISQ Era," Annual Review of Condensed Matter Physics 11, 325{344 (Mar. 2020).spa
dcterms.bibliographicCitation\The Quantum Computing Impact on Cybersecurity j QuantumXC."spa
dcterms.bibliographicCitationMosca, M., \Cybersecurity in an era with quantum computers: Will we be ready?," IEEE Security Pri- vacy 16(5), 38{41 (2018).spa
dcterms.bibliographicCitationAbraham, H., AduO ei, Agarwal, R., Akhalwaya, I. Y., Aleksandrowicz, G., Alexander, T., Amy, M., Arbel, E., Arijit02, Asfaw, A., Avkhadiev, A., Azaustre, C., AzizNgoueya, Banerjee, A., Bansal, A., Barkoutsos, P., Barnawal, A., Barron, G., Barron, G. S., Bello, L., Ben-Haim, Y., Bevenius, D., Bhobe, A., Bishop, L. S., Blank, C., Bolos, S., Bosch, S., and et. al., \Qiskit: An open-source framework for quantum computing," (2019).spa
dcterms.bibliographicCitationBergholm, V., Izaac, J., Schuld, M., Gogolin, C., Alam, M. S., Ahmed, S., Arrazola, J. M., Blank, C., Delgado, A., Jahangiri, S., McKiernan, K., Meyer, J. J., Niu, Z., Sz ava, A., and Killoran, N., \Penny- Lane: Automatic di erentiation of hybrid quantum-classical computations," arXiv:1811.04968 [physics, physics:quant-ph] (Feb. 2020). arXiv: 1811.04968.spa
dcterms.bibliographicCitation\DDoS 2019 j Datasets j Research j Canadian Institute for Cybersecurity j UNB."spa
dcterms.bibliographicCitationAbdi, H. and Williams, L. J., \Principal component analysis: Principal component analysis," Wiley Inter- disciplinary Reviews: Computational Statistics 2, 433{459 (July 2010).spa
dcterms.bibliographicCitationLloyd, S., Schuld, M., Ijaz, A., Izaac, J., and Killoran, N., \Quantum embeddings for machine learning," (2020). arXiv: 2001.03622spa
dcterms.bibliographicCitationSuykens, J. and Vandewalle, J. Neural Processing Letters 9(3), 293{300 (1999).spa
dcterms.bibliographicCitationRebentrost, P., Mohseni, M., and Lloyd, S., \Quantum Support Vector Machine for Big Data Classi cation," Physical Review Letters 113, 130503 (Sept. 2014).spa
dcterms.bibliographicCitationJ., A., Adedoyin, A., Ambrosiano, J., Anisimov, P., B artschi, A., Casper, W., Chennupati, G., Co rin, C., Djidjev, H., Gunter, D., Karra, S., Lemons, N., Lin, S., Malyzhenkov, A., Mascarenas, D., Mniszewski, S., Nadiga, B., O'Malley, D., Oyen, D., Pakin, S., Prasad, L., Roberts, R., Romero, P., Santhi, N., Sinitsyn, N., Swart, P. J., Wendelberger, J. G., Yoon, B., Zamora, R., Zhu, W., Eidenbenz, S., Coles, P. J., Vu ray, M., and Lokhov, A. Y., \Quantum Algorithm Implementations for Beginners," arXiv:1804.03719 [quant-ph] (Mar. 2020). arXiv: 1804.03719.spa
dcterms.bibliographicCitationAbbas, A., Schuld, M., and Petruccione, F., \On quantum ensembles of quantum classi ers," arXiv:2001.10833 [quant-ph] (Jan. 2020). arXiv: 2001.10833.spa
dcterms.bibliographicCitationBroughton, M., Verdon, G., McCourt, T., Martinez, A. J., Yoo, J. H., Isakov, S. V., Massey, P., Niu, M. Y., Halavati, R., Peters, E., Leib, M., Skolik, A., Streif, M., Von Dollen, D., McClean, J. R., Boixo, S., Bacon, D., Ho, A. K., Neven, H., and Mohseni, M., \TensorFlow Quantum: A Software Framework for Quantum Machine Learning," arXiv:2003.02989 [cond-mat, physics:quant-ph] (Mar. 2020). arXiv: 2003.02989spa
dcterms.bibliographicCitationMcClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush, R., and Neven, H., \Barren plateaus in quantum neural network training landscapes," Nature Communications 9 (Nov. 2018).spa
dcterms.bibliographicCitationSchuld, M., Bocharov, A., Svore, K. M., and Wiebe, N., \Circuit-centric quantum classi ers," Physical Review A 101 (Mar 2020).spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doi10.1117/12.2593297
dc.subject.keywordsQuantum computingspa
dc.subject.keywordsQuantum machine learningspa
dc.subject.keywordsQuantum Processing Unitsspa
dc.subject.keywordsCybersecurityspa
dc.subject.keywordsDDoS attacksspa
dc.subject.keywordsSmart Intrusion Detection Systemsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.