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Quantum Machine Learning for Intrusion Detection of
Distributed Denial of Service Attacks: A Comparative

Overview

E.D. Payares and J.C. Martinez-Santos

Universidad Tecnológica de Boĺıvar, Campus Tecnologico, Cartagena de Indias, Colombia

ABSTRACT

In recent years, we have seen an increase in computer attacks through our communication networks worldwide,
whether due to cybersecurity systems’ vulnerability or their absence. This paper presents three quantum models
to detect distributed denial of service attacks. We compare Quantum Support Vector Machines, hybrid Quantum-
Classical Neural Networks, and a two-circuit ensemble model running parallel on two quantum processing units.
Our work demonstrates quantum models’ effectiveness in supporting current and future cybersecurity systems by
obtaining performances close to 100%, being 96% the worst-case scenario. It compares our models’ performance
in terms of accuracy and consumption of computational resources.

Keywords: Quantum computing, Quantum machine learning, Quantum Processing Units, Cybersecurity, DDoS
attacks, Smart Intrusion Detection Systems

1. INTRODUCTION

Quantum computing is an area of computing touted with achieving incredible results for factoring and unordered
search problems.1 However, after many years, the scientific development achieved so far in quantum technologies
is beginning to pay-off, starting what could be called a quantum revolution in many other applications. During
those years of research, many powerful algorithms and applications appear for quantum hardware. In particular,
the potential of quantum computers to enhance machine learning is genuinely exciting2 because actually, these
two technologies have the potential to alter the way computing addresses previously unsustainable problems.3

Driven by increasing computing power and algorithmic advances, machine learning techniques have become
powerful tools for finding data patterns. Quantum systems produce outlier patterns that classical methods
cannot make efficiently. It is then reasonable to postulate that quantum computers can outperform classical
computers in machine learning tasks.4 Therefore, Quantum machine learning (QML) can enhance conventional
machine learning (ML) applications.

These technologies in the noisy intermediate-scale quantum (NISQ) era explore the potential for developing
systems that conclude with the search for advanced applications by quantum technologies. Modern ML has
provided us with generative modeling techniques that are perfectly suited for the emerging landscape of NISQ
hardware.5 An excellent example of this is the development of security systems against computer threats. Because
quantum technologies allow us to solve problems and take us to a point where the information and communication
technologies will be affected by new applications, new threats may arise. However, Quantum computing holds
great promise in many areas, such as medical research, artificial intelligence, weather forecasting, etc. It also
poses a significant cybersecurity threat, requiring a change in how we encrypt our data6 because two decades
ago, we learned that the quantum paradigm implies that practically all the deployed public-key cryptography
will entirely break by a quantum computer.7 For this reason, it is crucial to find out how different types of
quantum security systems behave in the face of this type of problem in an industry that is slowly transitioning
to making use of quantum technologies.
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2. METHODS

We used three approaches for the classification model with the chosen dataset for the development of this work.
For the first one, the QSVM model provided by QiskitAqua, which is the package for building algorithms and
applications by Qiskit (IBM).8 For the two other models, the specialized QML framework PennyLane (Xanadu
Quantum Technologies Inc.)9 The general steps applied in this methodology are described below and summarized
in Figure 1.

(A) Data Selection (B) Data Preparation

1. Class Balancing
2. Feature Selection
3. Dimension Reduction
4. Data encoding

(C) Train Models (D) Test Models & Analysis

Figure 1. Overview of the methodology process. (A) Search and selection of the dataset. (B) Data preprocessing to
improve models performance. (C) Construction and training of the models. (D) Generation of results, analysis and final
conclusions.

2.1 Data Description

To build the models is necessary to have a dataset available. For this case study, the suggested data set to
train our models is DDoS Evaluation Dataset (CIC-DDoS2019), which contains benign and the most up-to-date
common DDoS attacks, which resembles the actual real-world data (PCAPs). It also includes the network traffic
analysis results using CICFlowMeter-V3 with labeled flows based on the time stamp, source, and destination
IPs, source and destination ports, protocols, and attack.10 We use a sample of 38 features and 2950 data points,
which contains two classes: Benign, which means that the data does not represent any threat, and Simple Service
Discovery Protocol (SSDP) type DDoS attacks.

2.2 Preprocessing Data

Data preparation for the generation of results carries out three steps, class balancing, features selection &
dimension reduction, and data encoding. This process obtains the best possible results, depending on each
particular model’s specifications.

2.2.1 Class Balancing

Since we target an intrusion detection problem, our data represents network traffic and event logs per machine.
As in real-world situations, this data is imbalanced or evenly distributed. To solve this problem, we implemented
undersampling and oversampling algorithms, practically of the random type.

2.2.2 Feature Selection

Initially, our selected dataset had 80 features. However, we eliminate those features that interfere with the
performance of the models. This process consists of five different approaches:

• Remove features with a missing percentage more significant than a specified threshold.

• Remove features with a single unique value.

• Remove collinear variables with a correlation more significant than a specified correlation coefficient.
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• Remove features with 0.0 feature importance from a gradient boosting machine (GBM) and remove those
that do not contribute to specified cumulative feature importance from the GBM.

2.2.3 Normalization

We used two types of normalizations for the data. On the ensemble model side, we scaled the data from −π to
π, while the other models used a −1 to 1 scaling to improve the performance of the algorithms.

2.2.4 Principal Component Analisys (PCA)

As described above, we implemented a careful feature extraction process. However, for the construction of
our models, we considered that our data’s high dimensionality could be a problem due to the limitations of
the Frameworks. The overall PCA is a widely used option to deal with large datasets when processing data
for the use of machine learning models, a multivariate technique that analyzes the data table in which several
interrelated quantitative dependent variables describe the observations. Its objective is to extract the critical
information from the table, represent it as a set of new orthogonal variables called principal components, and
show the similarity pattern of the observations and variables as points.11 This process reduces our data to only
two features, as show Figure 2.
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Figure 2. Data used.

2.2.5 Data Encoding

In general, there are many methods, but they all have the same principle: represent classical data as quantum
states in a high-dimensional Hilbert space using a quantum feature map.12 It takes a classical datapoint x and
encodes it into a set of gate parameters in a quantum circuit, creating a quantum state |ψx〉.

In this particular case, we used the angle embedding method, which consists of encoding a set of N features
into the rotations angles of n qubits, where N ≤ n, using the Rx Gate that is one of the Rotation Operators.
The Rx gate is a single-qubit rotation around the angle θ (radians) along the x-axis of the Bloch Sphere (1).

Rx(θ) =

[
cos ( θ2 ) −i sin ( θ2 )
−i sin ( θ2 ) cos ( θ2 )

]
(1)
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2.3 Models

The models used in this work are practical adaptations using algorithms, concepts, and the necessary tools to
obtain a result through quantum architectures, which will be briefly described in this section, to be as replicable
as possible.

2.3.1 Quantum Support Vector Machine

Support vector machines (SVM) are a type of supervised machine learning algorithms for binary classifications
problems. this method as is widely known, maps the data into a higher dimensional input space and constructs an
optimal separating hyperplane in this space. This basically involves solving a quadratic programming problem.
Least Squares SVM (LS-SVM) is a version of SVM.13 It approximates the hyperplane finding procedure of SVM
by solving the linear equation (2). [

0
#»
1 T b

#»
1 K + γ−1 #»α

]
=

[
0
#»y

]
(2)

The quantum version of SVM performs the LS-SVM algorithm using quantum computers.14,15 It calculates
the kernel matrix using the quantum algorithm for the inner product on quantum random access memory. It
solves the linear equation using a quantum algorithm for solving linear equations15 and performs the classification
of query data using the trained qubits with a quantum algorithm.14 However, we can only use this method if data
is a coherent superposition. Since this is not the case, for convenience, we decided to implement the approach
presented in,3 which proposes a classifier that processes data that is provided classically and uses the quantum
state space as feature space, through the QSVM algorithm of the Qiskit framework.

2.3.2 Ensemble Model

The quantum property of superposition uses a specific framework to store sets of parameters, thereby generating
an ensemble of quantum classifiers computed in parallel. The idea stems from classical ensemble methods, where
one attempts to build a more robust model by averaging the results of several different models.16

Rx(x0) Rot(Θ̄
(0)
00 ) • • Rot(Θ̄

(0)
10 )

Rx(x1) Rot(Θ̄
(0)
01 ) • • Rot(Θ̄

(0)
11 )

Rx(x0) Rot(Θ̄
(0)
02 ) • Rot(Θ̄

(0)
12 )

Rx(x1) Rot(Θ̄
(0)
03 ) • Rot(Θ̄

(0)
13 )

Figure 3. Circuit for QPU-0.

As is shown in Figures 3 and 4, for the circuits for both QPUs, we used four qubits devices from the PennyLane
default qubit and the PennyLane-Cirq plugin simulator. The data is input using the angle embedding process
briefly explained in 2.2.5. Afterward, each of the circuits is enacted for each system with a particular set of
trainable parameters. The output of both circuits is a Pauli Z (3) operator for measurement on two qubits. The
result is passed into a softmax function, which results in two two-dimensional probability vectors corresponding
to the two classes. Finally, the ensemble model takes the QPU that is most positive in its prediction (i.e., the
class with the highest average likelihood over all QPUs) and uses it to make a prediction.

σz =

[
1 0
0 −1

]
(3)
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Figure 4. Circuit for QPU-1.

2.3.3 Hybrid Quantum-Classical Neural Network

Near-term quantum processors are still relatively small and noisy. Therefore quantum models cannot disassociate
and generalize quantum data using quantum processors alone. NISQ processors would need to operate in
conjunction with classical co-processors to be efficient.17 Many experimental proposals for noisy intermediate
quantum systems include training a parameterized quantum circuit with a classical optimization loop. These
hybrid quantum-classical algorithms are popular for quantum simulation, optimization, and machine learning
applications.18

Our model consists of three layers, two Classical Dense Layers, and one Quantum Layer. The process is a
little bit different from the other two models. Here we created two qubits, which represent two bias neurons,
corresponding to the two features evaluated from our post-processed data fed to the quantum layer via angle
embedding (2.2.5). This layer consists of single-qubit rotations and entanglers, which follows the circuit-centric
classifier design.19 In the same way as 2.3.2, two Pauli Z operators with a matrix defined in (3), for measurements
are created.

Rx(x0) Rot(Θ̄
(0)
00 ) •

Rx(x1) Rot(Θ̄
(0)
01 ) •

Figure 5. Quantum layer

The general architecture of this model consists, as mentioned above, of three layers. The first layer is a
Rectified Linear Unit (ReLU) function. The second is the described quantum variational circuit of two qubits
shown in Figure 5. The last layer consists of a Softmax function.

3. RESULTS AND DISCUSSION

The results∗ obtained in this study give us a clear vision of the behavior of quantum models concerning cy-
bersecurity problems and how addressing them through QML can be successful, depending on the application.
However, it is essential to note some points. Our results are summarized in Table 1.

Table 1. Summary of results.

Model Accuracy Recall Precision F-score Missclass CPU Time Memory usage

ENSEMBLE 0.96836 0.96832 0.97024 0.96832 0.0316 32.1 s 546.69 MiB
QSVM 0.99661 0.99660 0.99661 0.99661 0.0034 122.4×103 s 5.73 GiB
H-QNN 0.99887 0.99887 0.99887 0.99887 0.0011 5.265×103 s 520.05 MiB

∗Code available at: https://github.com/PCesteban/QMLforDDoS
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Figures 6, 7, 8, 9, and 10 show the predictions and confusion matrices for each model. The metrics presented
in Table 1 represent the evaluation of each model. Accuracy is the percentage of correct predictions for the test
data. Precision is the fraction of relevant examples (true positives) among all examples that belong to a given
class. Recall is the fraction of examples that belong to a class concerning all examples that belong to the class.
F-score is a combination of the recall and precision metrics to give an overall accurate picture of the model’s
evaluation in question. Finally, Missclass is the percentage of incorrect predictions.

Below we present some considerations to be taken into account to validate our results for each of the models.
The models do not behave in the same way with the same test data, and it was necessary to adjust them to
obtain better results.

Normalization or scaling of the data had a significant influence, as expected, on the results. For instance, in
the case of the QSVM model, we evidenced an increase in performance from 89% to 99.6% and an approximate
50% reduction in CPU time.
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Figure 6. QPU-0 model. A) Predictions for the test dataset. B) Confusion matrix for the test dataset.
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Figure 7. QPU-1 model. A) Predictions for the test dataset. B) Confusion matrix for the test dataset.
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As described in 2.3.2, the ensemble model results are the choices made by the algorithm depending on the
performance of each QPU in parallel. However, it is essential to see what influence each QPU had on the final
result. For that reason, we present a record of it that can see in Figures 6 and 7. On the one hand, the QPU-0
model performed acceptably with an accuracy of approximately 84.6%, correctly classifying most of the data
with the ”Benign” class, while on the other hand, the QPU-1 model, although performed poorly with an accuracy
of 60.4%, entirely classified all the data labeled as a ”DDoS” type threat.
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Figure 8. Ensemble model (QPU-0||QPU-1). A) Predictions for the test dataset. B) Confusion matrix for the test dataset.

On the computational resource consumption side, we found that the most expensive model is the QSVM
model. It is normal since this model focuses on being advantageous when the feature vector kernel computation
is not classically efficient, presenting an increase of more than 100% over the resources consumed by the ensemble
model, which was the most efficient.
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Figure 9. QSVM model. A) Predictions for the test dataset. B) Confusion matrix for the test dataset.

Finally, as shown in Table 1, the best performing model was the H-QNN, in terms of accuracy in proportion
to computational efficiency. Note that we have not considered the possibility of overfitting for each of the models.
It is possible because, parametrically, the models presented a quite robust behavior with the test data.
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Figure 10. H-QNN model. A) Predictions for the test dataset. B) Confusion matrix for the test dataset.

4. CONCLUSIONS

Although quantum technologies are gaining momentum in recent years, there is still a long way to go. Therefore
there is great potential in the quantum methods for artificial intelligence. However, the gap for the developed
approaches and applications to solve conventional computation problems is still vast.

This work shows that detecting DDoS type threats is possible using quantum machine learning methods
with high accuracy. Compared to other similar studies of the classical counterpart, we evidence a considerable
performance improvement. Three quantum models were presented, trained, and tested, each with excellent
results in their particular considerations. Future work includes:

• The use of more complex data.

• Theorized traffic representations of a quantum internet.

• A larger dataset to increase the reliability of the results.
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