Mostrar el registro sencillo del ítem

dc.contributor.authorMontoya, Oscar Danilo
dc.contributor.authorSerra, Federico Martin
dc.contributor.authorDe Angelo, Cristian Hernan
dc.contributor.authorChamorro, Harold R.
dc.contributor.authorAlvarado-Barrios, Lázaro
dc.date.accessioned2022-01-24T21:13:20Z
dc.date.available2022-01-24T21:13:20Z
dc.date.issued2021-08-20
dc.date.submitted2022-01-24
dc.identifier.citationMontoya, O.D.; Serra, F.M.; De Angelo, C.H.; Chamorro, H.R.; Alvarado-Barrios, L. Heuristic Methodology for Planning AC Rural Medium-Voltage Distribution Grids. Energies 2021, 14, 5141. https://doi.org/10.3390/en14165141spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10395
dc.description.abstractThe optimal expansion of AC medium-voltage distribution grids for rural applications is addressed in this study from a heuristic perspective. The optimal routes of a distribution feeder are selected by applying the concept of a minimum spanning tree by limiting the number of branches that are connected to a substation (mixed-integer linear programming formulation). In order to choose the caliber of the conductors for the selected feeder routes, the maximum expected current that is absorbed by the loads is calculated, thereby defining the minimum thermal bound of the conductor caliber. With the topology and the initial selection of the conductors, a tabu search algorithm (TSA) is implemented to refine the solution with the help of a three-phase power flow simulation in MATLAB for three different load conditions, i.e., maximum, medium, and minimum consumption with values of 100%, 60%, and 30%, respectively. This helps in calculating the annual costs of the energy losses that will be summed with the investment cost in conductors for determining the final costs of the planning project. Numerical simulations in two test feeders comprising 9 and 25 nodes with one substation show the effectiveness of the proposed methodology regarding the final grid planning cost; in addition, the heuristic selection of the calibers using the minimum expected current absorbed by the loads provides at least 70% of the calibers that are contained in the final solution of the problem. This demonstrates the importance of using adequate starting points to potentiate metaheuristic optimizers such as the TSA.spa
dc.format.extent20 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceEnergies vol. 14 n° 16 2021spa
dc.titleHeuristic Methodology for Planning AC Rural Medium-Voltage Distribution Gridsspa
dcterms.bibliographicCitationPicard, J.L.; Aguado, I.; Cobos, N.G.; Fuster-Roig, V.; Quijano-López, A. Electric Distribution System Planning Methodology Considering Distributed Energy Resources: A Contribution towards Real Smart Grid Deployment. Energies 2021, 14, 1924.spa
dcterms.bibliographicCitationRiaño, F.E.; Cruz, J.F.; Montoya, O.D.; Chamorro, H.R.; Alvarado-Barrios, L. Reduction of Losses and Operating Costs in Distribution Networks Using a Genetic Algorithm and Mathematical Optimization. Electronics 2021, 10, 419spa
dcterms.bibliographicCitationLi, R.; Wang, W.; Chen, Z.; Jiang, J.; Zhang, W. A Review of Optimal Planning Active Distribution System: Models, Methods, and Future Researches. Energies 2017, 10, 1715.spa
dcterms.bibliographicCitationLavorato, M.; Franco, J.F.; Rider, M.J.; Romero, R. Imposing Radiality Constraints in Distribution System Optimization Problems. IEEE Trans. Power Syst. 2012, 27, 172–180spa
dcterms.bibliographicCitationFarrag, M. A new model for distribution system planning. Int. J. Electr. Power Energy Syst. 1999, 21, 523–531.spa
dcterms.bibliographicCitationMejía-Solanilla, A.M.; Hincapié-Isaza, R.A.; Gallego-Rendón, R.A. Optimal planning of distribution systems considering multiple objectives: Investment cost, reliability and technical losses. Rev. Tecnura 2015, 19, 106spa
dcterms.bibliographicCitationDong, Y.F.; Gu, J.H.; Li, N.N.; Hou, X.D.; Yan, W.L. Combination of Genetic Algorithm and Ant Colony Algorithm for Distribution Network Planning. In Proceedings of the 2007 IEEE International Conference on Machine Learning and Cybernetics, Hong Kong, China, 19–22 August 2007spa
dcterms.bibliographicCitationKilyeni, S.; Barbulescu, C.; Simo, A.; Teslovan, R.; Oros, C. Genetic algorithm based distribution network expansion planning. In Proceedings of the 2014 IEEE 49th International Universities Power Engineering Conference (UPEC), Cluj-Napoca, Romania, 2–5 September 2014;spa
dcterms.bibliographicCitationMontoya, O.D.; Grajales, A.; Hincapié, R.A.; Granada, M. A new approach to solve the distribution system planning problem considering automatic reclosers. Ing. Rev. Chil. Ing. 2017, 25, 415–429spa
dcterms.bibliographicCitationMontoya, O.D.; Giraldo, J.S.; Grisales-Noreña, L.F.; Chamorro, H.R.; Alvarado-Barrios, L. Accurate and Efficient Derivative-Free Three-Phase Power Flow Method for Unbalanced Distribution Networks. Computation 2021, 9, 61spa
dcterms.bibliographicCitationMohamad, H.; Zalnidzham, W.I.F.W.; Salim, N.A.; Shahbudin, S.; Yasin, Z.M. Power system restoration in distribution network using minimum spanning tree—Kruskal’s algorithm. Indones. J. Electr. Eng. Comput. Sci. 2019, 16, 1–8.spa
dcterms.bibliographicCitationLavorato, M.; Rider, M.J.; Garcia, A.V.; Romero, R. Distribution network planning using a constructive heuristic algorithm. In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009spa
dcterms.bibliographicCitationMontoya, O.; Grajales, A.; Hincapié, R. Optimal selection of conductors in distribution systems using tabu search algorithm. Ing. Rev. Chil. Ing. 2018, 26, 283–295. [spa
dcterms.bibliographicCitationGranada, M.; Gallego-Rendón, R.A.; López-Lezama, J.M. Optimal Phase Balancing Planning for Loss Reduction in Distribution Systems using a Specialized Genetic Algorithm. Ing. Cienc. 2012, 8, 121–140.spa
dcterms.bibliographicCitationRao, B.; Kupzog, F.; Kozek, M. Three-Phase Unbalanced Optimal Power Flow Using Holomorphic Embedding Load Flow Method. Sustainability 2019, 11, 1774.spa
dcterms.bibliographicCitationCortés-Caicedo, B.; Avellaneda-Gómez, L.S.; Montoya, O.D.; Alvarado-Barrios, L.; Chamorro, H.R. Application of the Vortex Search Algorithm to the Phase-Balancing Problem in Distribution Systems. Energies 2021, 14, 1282.spa
dcterms.bibliographicCitationLavorato, M.; Rider, M.J.; Garcia, A.V.; Romero, R. A Constructive Heuristic Algorithm for Distribution System Planning. IEEE Trans. Power Syst. 2010, 25, 1734–1742.spa
dcterms.bibliographicCitationFan, N.; Golari, M. Integer Programming Formulations for Minimum Spanning Forests and Connected Components in Sparse Graphs. In Combinatorial Optimization and Applications; Springer International Publishing: New York, NY, USA, 2014; pp. 613–622spa
dcterms.bibliographicCitationHaouari, M.; Chaouachi, J.; Dror, M. Solving the generalized minimum spanning tree problem by a branch-and-bound algorithm. J. Oper. Res. Soc. 2005, 56, 382–389spa
dcterms.bibliographicCitationMalamaki, K.N.D.; Konstantinidis, I.; Demoulias, C.S. Analytical evaluation of the annual load duration curve of domestic prosumers. In Proceedings of the 2017 IEEE Manchester PowerTech, Manchester, UK, 18–22 June 2017spa
dcterms.bibliographicCitationCaserta, M. Tabu Search-Based Metaheuristic Algorithm for Large-scale Set Covering Problems. In Metaheuristics; Springer: New York, NY, USA, 2007; pp. 43–63spa
dcterms.bibliographicCitationXing, L.; Liu, Y.; Li, H.; Wu, C.C.; Lin, W.C.; Chen, X. A Novel Tabu Search Algorithm for Multi-AGV Routing Problem. Mathematics 2020, 8, 279spa
dcterms.bibliographicCitationTang, F.; Zhou, H.; Wu, Q.; Qin, H.; Jia, J.; Guo, K. A Tabu Search Algorithm for the Power System Islanding Problem. Energies 2015, 8, 11315–11341.spa
dcterms.bibliographicCitationLucay, F.; Gálvez, E.; Cisternas, L. Design of Flotation Circuits Using Tabu-Search Algorithms: Multispecies, Equipment Design, and Profitability Parameters. Minerals 2019, 9, 181.spa
dcterms.bibliographicCitationIsmael, S.M.; Aleem, S.H.E.A.; Abdelaziz, A.Y. Optimal selection of conductors in Egyptian radial distribution systems using sine-cosine optimization algorithm. In Proceedings of the IEEE 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 19–21 December 2017;spa
dcterms.bibliographicCitationMartínez-Gil, J.F.; Moyano-García, N.A.; Montoya, O.D.; Alarcon-Villamil, J.A. Optimal Selection of Conductors in Three-Phase Distribution Networks Using a Discrete Version of the Vortex Search Algorithm. Computation 2021, 9, 80spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.3390/en14165141
dc.subject.keywordsDistribution system planningspa
dc.subject.keywordsTabu search algorithmspa
dc.subject.keywordsMinimum spanning treespa
dc.subject.keywordsHeuristic optimization methodologyspa
dc.subject.keywordsRural distribution networksspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_6501spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.