Mostrar el registro sencillo del ítem

dc.contributor.authorBuelvas Hernández, Ana Margarita
dc.contributor.authorFajardo Cuadro, Juan Gabriel
dc.contributor.authorBarreto Ponton, Deibys
dc.contributor.authorCarrillo Caballero, Gaylord Enrique
dc.contributor.authorCardenas Escorcia, Yulineth
dc.contributor.authorVidal Tovar, Carlos Ramón
dc.contributor.authorHernández, Yimy Gordon
dc.date.accessioned2022-01-17T20:57:34Z
dc.date.available2022-01-17T20:57:34Z
dc.date.issued2021-07-30
dc.date.submitted2022-01-07
dc.identifier.citationAna Buelvas Hernández, Juan Gabriel Fajardo, Deibys Barreto, Gaylord Enrique Carrillo Caballero, Yulineth Cárdenas Escorcia, Carlos Ramón Vidal Tovar, Yimy Gordon Hernández, Conventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages, Case Studies in Thermal Engineering, Volume 27, 2021, 101214, ISSN 2214-157X, https://doi.org/10.1016/j.csite.2021.101214.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10386
dc.description.abstractIn the refining and petrochemical industrial sector, large amounts of energy are used, so using the concept of exergy allows a rational use of this resource. In the different exergy and exergoeconomics studies applied in petrochemical plants, parameters of interest have been determined to evaluate the thermal efficiency, the potential for process improvement, the irreversibilities produced by the interaction between the components of the system and the operation of each one, and the energy costs associated with each of these irreversibilities. This paper presents an advanced exergy analysis and an exergy-economic analysis applied to a nitric acid production plant with an installed capacity of 350 metric tons per day, whose operating principle is based on the Ostwald method, and both the behavior of endogenous exergy destruction and the behavior of exogenous, avoidable and unavoidable exergy destruction are studied, exogenous, avoidable and unavoidable exergy destruction and the associated exergy costs in each of the heat transfer equipment and reactive equipment that make up the plant, about the cooling temperature in the intermediate stages of the compression train are studied using a mathematical model. The chemical reactions involved in the production process are the points of interest in the research of this work. Some of the results show that 54 % of the total exergy destruction can be recovered by intervening in the components. On the other hand, in the Catalytic Converter (CONV), it is convenient to consider the investment costs to reduce the exergy destruction costs. Similarly, in the Tail Gas Heater (TGH), it is beneficial to reduce the total investment to improve the process economics. On the other hand, the cost of exergy destruction of the plant resulted in 770.77 USD/h. In addition, it could be determined that the interactions between the components significantly affect the investment costsspa
dc.format.extent22 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceCase Studies in Thermal Engineering - vol. 27spa
dc.titleConventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train’s intermediate stagesspa
dcterms.bibliographicCitationK. Iftekhar, F. Alam y, Q. Alam The global climate change and its effect on power generation Energy Pol. (2013), pp. 1460-1470spa
dcterms.bibliographicCitationR. Rivero Application of the exergy concept in the petroleum refining and petrochemical industry Energy Convers. Manag., 43 (2002), pp. 1199-1220spa
dcterms.bibliographicCitationA. Valero, M.A. Lozano, M. Muñoz A General Theory of Exergy Saving I, II and III ASME, New York (1986)spa
dcterms.bibliographicCitationA. Bejan, G. Tsatsaronis y, M. Moran Thermal Designing and Optimization, New York John Wiley & Sons (1996)spa
dcterms.bibliographicCitationP. Ifaei, A. Ataei y, C. Yoo Thermoeconomic and environmental analyses of a low water consumption combined steam power plant and refrigeration chillers-Part 2: thermoeconomic and environmental analysis Energy Convers. Manag., 123 (2016), pp. 625-642spa
dcterms.bibliographicCitationC. Yan, L. Lv, S. Wei, A. Eslamimanesh, W. Shen Application of retrofitted design and optimization framework based on the exergy analysis to a crude oil distillation plant Appl. Therm. Eng., 154 (2019), pp. 637-649spa
dcterms.bibliographicCitationO.J. Odejobi Exergy and economic analyses of crude oil distillation unit Afr. J. Eng. Res., 3 (2015), pp. 44-55spa
dcterms.bibliographicCitationK. Altayib, I. Dincer Analysis and assessment of using an integrated solar energy-based system in a crude oil refinery Appl. Therm. Eng., 159 (2019), p. 12spa
dcterms.bibliographicCitationZ. Nur Izyan y, M. Shuhaimi Exergy analysis for fuel reduction strategies in crude distillation unit Energy, 66 (2014), pp. 801-807spa
dcterms.bibliographicCitationD. Barreto, J. Fajardo y, J. Campillo Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis de ASME Int. Mechan. Eng. Congr. Exposit., Proc., Salt Lake City, 6 (2019) Energyspa
dcterms.bibliographicCitationA. Buelvas, H. Valle y, J. Fajardo Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant de ASME 2018 Int. Mechan. Eng. Congr. Exposit., Pennsylvania, 6B (2018) Energyspa
dcterms.bibliographicCitationL. Tock, F. Marechal Co-production of hydrogen and electricity from lignocellulosic biomass: process design and thermo-economic optimization Energy, 45 (2012), pp. 339-349spa
dcterms.bibliographicCitationP. Caliandro, L. Tock, A.V. Ensinas, F. Marechal Thermo-economic optimization of a solid oxide fuel cell- gas turbine system fuelled with gasified lignocellulosic biomass Energy Convers. Manag., 85 (2014), pp. 764-773spa
dcterms.bibliographicCitationD. Brown, M. Gassner, T. Fuchino, F. Maréchal Thermo-economic analysis for the optimal conceptual design of biomass gasification energy conversion systems Appl. Therm. Eng., 29 (2009), pp. 2137-2152spa
dcterms.bibliographicCitationM. Rivarolo, B. D, M. A, A. Massardo Hydro-methane and methanol combined production from hydroelectricity and biomass: thermo-economic analysis in Paraguay Energy Convers. Manag., 79 (2014), pp. 74-84spa
dcterms.bibliographicCitationG. Singh, P. Singh, V. Tyagi, P. Barnwal, A. Pandey Exergy and thermo-economic analysis of ghee production plant in the dairy industry Energy, 167 (2019), pp. 602-618spa
dcterms.bibliographicCitationA. Abusoglu, M. Kanoglu Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 2 – Application Appl. Therm. Eng., 29 (2009), pp. 242-249spa
dcterms.bibliographicCitationX. Zhang, R. Zeng, K. Mu, X. Liu, X. Sun, H. Li Exergectic and exergoeconomic evaluation of co-firing biomass with natural gas in CCHP system integrated with ground source heat pump Energy Convers. Manag., 180 (2019), pp. 622-640spa
dcterms.bibliographicCitationS. Seyyedi, M. Hashemi-Tilehnoee, M.A. Rosen Exergy and exergoeconomic analyses of a novel integration of a 1000 MW pressurized water reactor power plant and a gas turbine cycle through a superheater Ann. Nucl. Energy, 115 (2018), pp. 161-172spa
dcterms.bibliographicCitationL. Castellon, J. Fajardo, B. Sarria Thermoeconomic analysis of wheat flour agroindustrial planta Proceedings of the 15 the International Mechanical Engineering Congress and Exposition, Texas, Houston (2015)spa
dcterms.bibliographicCitationM. Bin Shams, E. Elkanzi, Z. Ramadhan, S. Rahma y, M. Khamis Gas turbine inlet air cooling system for enhancing propane recovery in a gas plant: theorical and cost analyses Nat. Gas Sci. Eng. (2017), p. 34spa
dcterms.bibliographicCitationM. Callak, F. Balkan, A. Hepbalsi Avoidable and unavoidable exergy destructions of a fluidized bed coal combustor and heat recovery steam generator Energy Convers. Manag., 98 (2015), pp. 54-58spa
dcterms.bibliographicCitationH. Nami, A. Nemati, F.J. Fard Conventional and advanced exergy analyses of a geothermal driven dual fluid organic Rankine cycle (ORC) Appl. Therm. Eng. (2017), p. 46spa
dcterms.bibliographicCitationO. Balli Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system: splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous Appl. Therm. Eng., 111 (2017), pp. 152-169spa
dcterms.bibliographicCitationM. Yari, S.M. Mahmoudi, M. Fallah Advanced exergy analysis for an anode gas recirculation solid oxide fuel cell Energy, 141 (2017), pp. 1097-1112spa
dcterms.bibliographicCitationZ. Wang, W. Xion, D.S.-K. Ting, R. Carriveau, Z. Wang Conventional and advanced exergy analyses of an underwater compressed air energy storage system Appl. Energy, 180 (2016), pp. 810-822spa
dcterms.bibliographicCitationS. Fellaou, T. Bounahmidi Analyzing thermodynamic improvement potential of a selected cement manufacturing process: advanced exergy analysis Energy, 154 (2018), pp. 190-200spa
dcterms.bibliographicCitationA. Pazildar y, S. Sadrameli Conventional and advanced exergoeconomic analyses applied to ethylene refrigeration system of an existing olefin plant Energy Convers. Manag., 138 (2017), pp. 474-485spa
dcterms.bibliographicCitationA. Palizdar, T. Ramezani, Z. Nargessi, S. AmirAfshar, M. Abbasi, A. Vatani Advanced exergoeconomic evaluation of a mini-scale nitrogen dual expander process for liquefaction of natural gas Energy, 168 (2019), pp. 542-557spa
dcterms.bibliographicCitationM. Mehrpooya, H. Ansarinasab Advanced exergoeconomic evaluation of single mixed refrigerant natural gas liquefaction processes J. Nat. Gas Sci. Eng., 26 (2015), pp. 782-791spa
dcterms.bibliographicCitationM. Mehrpooya, S. Ali Mousavi Advanced exergoeconomic assessment of a solar-driven Kalina cycle Energy Convers. Manag., 178 (2018), pp. 78-91spa
dcterms.bibliographicCitationH. Ansarinasab, M. Mehrpooya, M. Pouriman Advanced exergoeconomic evaluation of a new cryogenic Helium recovery process from natural gas based on the flash separation - APCI modified process Appl. Therm. Eng., 132 (5) (2017), pp. 368-380spa
dcterms.bibliographicCitationD. Barreto, J. Fajardo, G. Carrillo y, Y. Cardenas Advanced and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine Energy Technol., 9 (2021), p. 16spa
dcterms.bibliographicCitationY. Cengel Termodinámica, Mexico (2011)spa
dcterms.bibliographicCitationS. Turn An introduction to combustion concepts and application (2000)spa
dcterms.bibliographicCitationA. Buelvas, J. Fajardo y, H. Valle Conventional and advanced exergoeconomic analysis in a nitric acid production plant Int. Mechan. Eng. Congr. Exposit., Salt Lake City, 6 (2020) Energyspa
dcterms.bibliographicCitationJ. Egzergia Szargut Poradnik obliczania I stosowania Editor: widawnictwo politechniki shlaskej, Gliwice (2007) 129 pagesspa
dcterms.bibliographicCitationA. Abusoglu y, M. Kanoglu Exergetic and thermoeconomic analyses of diesel engine powered Appl. Therm. Eng., 29 (2008), pp. 234-241spa
dcterms.bibliographicCitationA. Bejan, G. Tsatsaronis y, M. Moran Thermal Design & Optimization JOHN WILEY & SONS, INC, Toronto (1996)spa
dcterms.bibliographicCitationL. Wang, Y. Yang, T. Morosuk y, G. Tsatsaronis Advanced thermodynamic analysis and evaluation of a supercritical power plant Energies, 5 (2012), pp. 1850-1863spa
dcterms.bibliographicCitationG. Tsatsaronis, K. Solange y, T. Morosuk Endogenous and exogenous exergy destruction in thermal systems Proceedings of International Mechanical Engineering Congress and Exposition-IMECE, vol. 2006 (2006), pp. 311-317spa
dcterms.bibliographicCitationG. Tsatsaronis y, M. Park On Avoidable and unavoidable exergy destructions and investment costs in thermal systems Energy Convers. Manag., 43 (2002), pp. 1259-1270spa
dcterms.bibliographicCitationJ. Couper, W. Penney, J. Fair y, S. Walas Chemical Process Equipment: Selection and Design Butterworth-Heinemann (2010)spa
dcterms.bibliographicCitationG. Towler y, R. Sinnott Chemical Engineering Design: Principles, Practice, and Economics of Plant and Process Design Butterworth-Heinemann (2013)spa
dcterms.bibliographicCitationJ. Fajardo, H. Valley, A. Buelvas Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant ASME Int. Mechan. Eng. Congr. Exposit., Pittsburgh, 6B (2018) Energyspa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.csite.2021.101214.
dc.subject.keywordsExergoconomyspa
dc.subject.keywordsEndogenous exergyspa
dc.subject.keywordsExogenous exergyspa
dc.subject.keywordsAvoidable exergyspa
dc.subject.keywordsInevitable exergyspa
dc.subject.keywordsExergo-economic indicatorsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.