Mostrar el registro sencillo del ítem

dc.contributor.authorGiraldo-Guzmán J.
dc.contributor.authorKotas, Marian
dc.contributor.authorCastells, Francisco
dc.contributor.authorContreras Ortiz, Sonia Helena
dc.contributor.authorUrina-Triana, Miguel
dc.coverage.spatialColombia
dc.date.accessioned2021-09-22T21:30:29Z
dc.date.available2021-09-22T21:30:29Z
dc.date.issued2021-05-03
dc.date.submitted2021-09-08
dc.identifier.citationJader Giraldo-Guzmán, Marian Kotas, Francisco Castells, Sonia H. Contreras-Ortiz, Miguel Urina-Triana,Estimation of PQ distance dispersion for atrial fibrillation detection, Computer Methods and Programs in Biomedicine, Volume 208, 2021, 106167, ISSN 0169-2607, https://doi.org/10.1016/j.cmpb.2021.106167.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10368
dc.description.abstractBackground and objective: Atrial fibrillation (AF) is the most common cardiac arrhythmia in the world. It is associated with significantly increased morbidity and mortality. Diagnosis of the disease can be based on the analysis of the electrical atrial activity, on quantification of the heart rate irregularity or on a mixture of the both approaches. Since the amplitude of the atrial waves is small, their analysis can lead to false results. On the other hand, the heart rate based analysis usually leads to many unnecessary warnings. Therefore, our goal is to develop a new method for effective AF detection based on the analysis of the electrical atrial waves. Methods: The proposed method employs the fact that there is a lack of repeatable P waves preceding QRS complexes during AF. We apply the operation of spatio-temporal filtering (STF) to magnify and detect the prominent spatio-temporal patterns (STP) within the P waves in multi-channel ECG recordings. Later we measure their distances (PQ) to the succeeding QRS complexes, and we estimate dispersion of the obtained PQ series. For signals with normal sinus rhythm, this dispersion is usually very low, and contrary, for AF it is much raised. This allows for effective discrimination of this cardiologic disorder. Results: Tested on an ECG database consisting of AF cases, normal rhythm cases and cases with normal rhythm restored by the use of cardioversion, the method proposed allowed for AF detection with the accuracy of 98.75% on the basis of both 8–channel and 2–channel signals of 12 s length. When the signals length was decreased to 6 s, the accuracy varied in the range of 95% − 97.5% depending on the number of channels and the dispersion measure applied. Conclusions: Our approach allows for high accuracy of atrial fibrillation detection using the analysis of electrical atrial activity. The method can be applied to an early detection of the desease and can advantageously be used to decrease the number of false warnings in systems based on the analysis of the heart rate.spa
dc.format.extent12 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceComputer Methods and Programs in Biomedicine, Vol 208, 2021spa
dc.titleEstimation of PQ distance dispersion for atrial fibrillation detectionspa
dcterms.bibliographicCitationOrganization, W.H. (2017) Cardiovascular diseases http://www.who.int/mediacentre/factsheets/fs317/en/spa
dcterms.bibliographicCitationKamel, H., Okin, P.M., Elkind, M.S.V., Iadecola, C. Atrial Fibrillation and Mechanisms of Stroke: Time for a New Model (Open Access) (2016) Stroke, 47 (3), pp. 895-900. Cited 243 times. http://stroke.ahajournals.org/ doi: 10.1161/STROKEAHA.115.012004spa
dcterms.bibliographicCitationSörnmo, L. Atrial Fibrillation from an Engineering Perspective (2018) . Cited 11 times. Springerspa
dcterms.bibliographicCitationZhou, X., Ding, H., Wu, W., Zhang, Y. A real-time Atrial fibrillation detection algorithm based on the instantaneous state of heart rate (Open Access) (2015) PLoS ONE, 10 (9), art. no. 0136544. Cited 52 times. http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0136544&representation=PDF doi: 10.1371/journal.pone.0136544spa
dcterms.bibliographicCitationIslam, M.S., Ammour, N., Alajlan, N., Aboalsamh, H. Rhythm-based heartbeat duration normalization for atrial fibrillation detection (2016) Computers in Biology and Medicine, 72, pp. 160-169. Cited 17 times. www.elsevier.com/locate/compbiomed doi: 10.1016/j.compbiomed.2016.03.015spa
dcterms.bibliographicCitationCzabanski, R., Horoba, K., Wrobel, J., Matonia, A., Martinek, R., Kupka, T., Jezewski, M., (...), Leski, J.M. Detection of atrial fibrillation episodes in long‐term heart rhythm signals using a support vector machine (Open Access) (2020) Sensors (Switzerland), 20 (3), art. no. 765. Cited 13 times. https://www.mdpi.com/1424-8220/20/3/765/pdf doi: 10.3390/s20030765spa
dcterms.bibliographicCitationCliment, A.M., Guillem, M.D.L.S., Husser, D., Castells, F., Millet, J., Bollmann, A. Poincaré surface profiles of RR intervals: A novel noninvasive method for the evaluation of preferential AV nodal conduction during atrial fibrillation (2009) IEEE Transactions on Biomedical Engineering, 56 (2), art. no. 4595675, pp. 433-442. Cited 24 times. doi: 10.1109/TBME.2008.2003273spa
dcterms.bibliographicCitationEbrahimzadeh, E., Kalantari, M., Joulani, M., Shahraki, R.S., Fayaz, F., Ahmadi, F. Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combined feature vector and mixture of expert classification on HRV signal (2018) Computer Methods and Programs in Biomedicine, 165, pp. 53-67. Cited 33 times. www.elsevier.com/locate/cmpb doi: 10.1016/j.cmpb.2018.07.014spa
dcterms.bibliographicCitationBuscema, P.M., Grossi, E., Massini, G., Breda, M., Della Torre, F. Computer Aided Diagnosis for atrial fibrillation based on new artificial adaptive systems (2020) Computer Methods and Programs in Biomedicine, 191, art. no. 105401. Cited 10 times. www.elsevier.com/locate/cmpb doi: 10.1016/j.cmpb.2020.105401spa
dcterms.bibliographicCitationAlcaraz, R., Martínez, A., Rieta, J.J. Role of the P-wave high frequency energy and duration as noninvasive cardiovascular predictors of paroxysmal atrial fibrillation (2015) Computer Methods and Programs in Biomedicine, 119 (2), pp. 110-119. Cited 8 times. www.elsevier.com/locate/cmpb doi: 10.1016/j.cmpb.2015.01.006spa
dcterms.bibliographicCitationStridh, M., Sörnmo, L. Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation (2001) IEEE Transactions on Biomedical Engineering, 48 (1), pp. 105-111. Cited 282 times. doi: 10.1109/10.900266spa
dcterms.bibliographicCitationCastells, F., Rieta, J.J., Millet, J., Zarzoso, V. Spatiotemporal blind source separation approach to atrial activity estimation in atrial tachyarrhythmias (2005) IEEE Transactions on Biomedical Engineering, 52 (2), pp. 258-267. Cited 126 times. doi: 10.1109/TBME.2004.840473spa
dcterms.bibliographicCitationLadavich, S., Ghoraani, B. Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity (2015) Biomedical Signal Processing and Control, 18, pp. 274-281. Cited 81 times. http://www.elsevier.com/wps/find/journalbibliographicinfo.cws_home/706718/description#bibliographicinfo doi: 10.1016/j.bspc.2015.01.007spa
dcterms.bibliographicCitationPürerfellner, H., Pokushalov, E., Sarkar, S., Koehler, J., Zhou, R., Urban, L., Hindricks, G. P-wave evidence as a method for improving algorithm to detect atrial fibrillation in insertable cardiac monitors (Open Access) (2014) Heart Rhythm, 11 (9), pp. 1575-1583. Cited 69 times. http://www.elsevier.com/inca/publications/store/7/0/2/3/3/3/index.htt doi: 10.1016/j.hrthm.2014.06.006spa
dcterms.bibliographicCitationBabaeizadeh, S., Gregg, R.E., Helfenbein, E.D., Lindauer, J.M., Zhou, S.H. Improvements in atrial fibrillation detection for real-time monitoring (2009) Journal of Electrocardiology, 42 (6), pp. 522-526. Cited 107 times. doi: 10.1016/j.jelectrocard.2009.06.006spa
dcterms.bibliographicCitationCouceiro, R., Carvalho, P., Henriques, J., Antunes, M., Harris, M., Habetha, J. (2008) , pp. 1-5. Detection of atrial fibrillation using model-based ECG analysisspa
dcterms.bibliographicCitationHe, R., Wang, K., Zhao, N., Liu, Y., Yuan, Y., Li, Q., Zhang, H. Automatic detection of atrial fibrillation based on continuous wavelet transform and 2D convolutional neural networks (Open Access) (2018) Frontiers in Physiology, 9 (AUG), art. no. 1206. Cited 46 times. https://www.frontiersin.org/articles/10.3389/fphys.2018.01206/full doi: 10.3389/fphys.2018.01206spa
dcterms.bibliographicCitationXia, Y., Wulan, N., Wang, K., Zhang, H. Detecting atrial fibrillation by deep convolutional neural networks (2018) Computers in Biology and Medicine, 93, pp. 84-92. Cited 131 times. www.elsevier.com/locate/compbiomed doi: 10.1016/j.compbiomed.2017.12.007spa
dcterms.bibliographicCitationShi, H., Wang, H., Qin, C., Zhao, L., Liu, C. An incremental learning system for atrial fibrillation detection based on transfer learning and active learning (2020) Computer Methods and Programs in Biomedicine, 187, art. no. 105219. Cited 9 times. www.elsevier.com/locate/cmpb doi: 10.1016/j.cmpb.2019.105219spa
dcterms.bibliographicCitationYildirim, O., Talo, M., Ciaccio, E.J., Tan, R.S., Acharya, U.R. Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records (Open Access) (2020) Computer Methods and Programs in Biomedicine, 197, art. no. 105740. Cited 12 times. www.elsevier.com/locate/cmpb doi: 10.1016/j.cmpb.2020.105740spa
dcterms.bibliographicCitationJones, N.R., Taylor, C.J., Hobbs, F.D.R., Bowman, L., Casadei, B. Screening for atrial fibrillation: A call for evidence (Open Access) (2020) European Heart Journal, 41 (10), pp. 1075-1085. Cited 39 times. http://eurheartj.oxfordjournals.org/ doi: 10.1093/eurheartj/ehz834spa
dcterms.bibliographicCitationMandrola, J., Foy, A. Downsides of detecting atrial fibrillation in asymptomatic patients (2019) American Family Physician, 99 (6), pp. 354-355. Cited 5 times. https://www.aafp.org/afp/2019/0315/p354.pdfspa
dcterms.bibliographicCitationKotas, M., Jezewski, J., Horoba, K., Matonia, A. Application of spatio-temporal filtering to fetal electrocardiogram enhancement (2011) Computer Methods and Programs in Biomedicine, 104 (1), pp. 1-9. Cited 39 times. doi: 10.1016/j.cmpb.2010.07.004spa
dcterms.bibliographicCitationCastells, F. (2003) Blind source separation with prior source knowledge for the analysis of atrial tachyarrhythmias. Signal modelling, estimation and validation Universitat Politècnica de València, Spain Ph.D. thesisspa
dcterms.bibliographicCitationGoldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., (...), Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. (2000) Circulation, 101 (23), pp. E215-220. Cited 7358 times.spa
dcterms.bibliographicCitationKay, S.M. Fundamentals of Statistical Signal Processing (1993) . Cited 14934 times. Prentice Hall PTRspa
dcterms.bibliographicCitationYang, B., Li, H., Wang, Q., Zhang, Y. Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces (2016) Computer Methods and Programs in Biomedicine, 129, pp. 21-28. Cited 50 times. www.elsevier.com/locate/cmpb doi: 10.1016/j.cmpb.2016.02.020spa
dcterms.bibliographicCitationMiladinović, A., Ajčević, M., Jarmolowska, J., Marusic, U., Colussi, M., Silveri, G., Battaglini, P.P., (...), Accardo, A. Effect of power feature covariance shift on BCI spatial-filtering techniques: A comparative study (2021) Computer Methods and Programs in Biomedicine, 198, art. no. 105808. Cited 4 times. www.elsevier.com/locate/cmpb doi: 10.1016/j.cmpb.2020.105808spa
dcterms.bibliographicCitationPan, J., Tompkins, W.J. A Real-Time QRS Detection Algorithm (1985) IEEE Transactions on Biomedical Engineering, BME-32 (3), pp. 230-236. Cited 4593 times. doi: 10.1109/TBME.1985.325532spa
dcterms.bibliographicCitationAzami, H., Mohammadi, K., Bozorgtabar, B. (2012) An improved signal segmentation using moving average and Savitzky-Golay filter.spa
dcterms.bibliographicCitationMiljković, N., Popović, N., Djordjević, O., Konstantinović, L., Šekara, T.B. ECG artifact cancellation in surface EMG signals by fractional order calculus application (2017) Computer Methods and Programs in Biomedicine, 140, pp. 259-264. Cited 25 times. www.elsevier.com/locate/cmpb doi: 10.1016/j.cmpb.2016.12.017spa
dcterms.bibliographicCitationCroarkin, C., Tobias, P., Filliben, J., Hembree, B., Guthrie, W. (2006) NIST/SEMATECH e-handbook of statistical methods, NIST/SEMATECH, July. Available online:. http://www.itl.nist.gov/div898/handbookspa
dcterms.bibliographicCitationMartínez, J.P., Almeida, R., Olmos, S., Rocha, A.P., Laguna, P. A Wavelet-Based ECG Delineator Evaluation on Standard Databases (2004) IEEE Transactions on Biomedical Engineering, 51 (4), pp. 570-581. Cited 1096 times. doi: 10.1109/TBME.2003.821031spa
dcterms.bibliographicCitationSaul, L.K., Allen, J.B. Periodic component analysis: an eigenvalue method for representing periodic structure in speech (2000) Nips, pp. 807-813. Cited 18 times.spa
dcterms.bibliographicCitationSameni, R., Jutten, C., Shamsollahi, M.B. Multichannel electrocardiogram decomposition using periodic component analysis (Open Access) (2008) IEEE Transactions on Biomedical Engineering, 55 (8), art. no. 4, pp. 1935-1940. Cited 140 times. doi: 10.1109/TBME.2008.919714spa
dcterms.bibliographicCitationMonasterio, V., Clifford, G.D., Laguna, P., Martínez, J.P. A multilead scheme based on periodic component analysis for T-Wave alternans analysis in the ECG (Open Access) (2010) Annals of Biomedical Engineering, 38 (8), pp. 2532-2541. Cited 39 times. http://link.springer.com/journal/volumesAndIssues/10439 doi: 10.1007/s10439-010-0029-zspa
dcterms.bibliographicCitationLeski, J.M., Kotas, M. Hierarchical clustering with planar segments as prototypes (2015) Pattern Recognition Letters, 54, pp. 1-10. Cited 9 times. http://www.journals.elsevier.com/pattern-recognition-letters/ doi: 10.1016/j.patrec.2014.11.012spa
dcterms.bibliographicCitationLeski, J.M., Kotas, M. On robust fuzzy c-regression models (2015) Fuzzy Sets and Systems, 279, art. no. 6709, pp. 112-129. Cited 17 times. http://www.journals.elsevier.com/fuzzy-sets-and-systems/ doi: 10.1016/j.fss.2014.12.004spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dc.identifier.doihttps://doi.org/10.1016/j.cmpb.2021.106167
dc.subject.keywordsECG processingspa
dc.subject.keywordsAtrial fibrillationspa
dc.subject.keywordsPQ dispersion Spatio–temporalspa
dc.subject.keywordsfiltering Spatio–temporal patternsspa
dc.subject.keywordsSpatio–temporal patternsspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.