Mostrar el registro sencillo del ítem
Passivity-based control of islanded microgrids with unknown power loads
dc.contributor.author | Avila Becerril, Sofia | |
dc.contributor.author | Espinosa Pérez, Gerardo | |
dc.contributor.author | Montoya, Oscar Danilo | |
dc.contributor.author | Garcés, Alejandro | |
dc.date.accessioned | 2021-07-29T19:01:15Z | |
dc.date.available | 2021-07-29T19:01:15Z | |
dc.date.issued | 2020-10-12 | |
dc.date.submitted | 2021-07-28 | |
dc.identifier.citation | Sofía Avila-Becerril, Gerardo Espinosa-Pérez, Oscar Danilo Montoya, Alejandro Garces, Passivity-based control of islanded microgrids with unknown power loads, IMA Journal of Mathematical Control and Information, Volume 37, Issue 4, December 2020, Pages 1548–1573, https://doi.org/10.1093/imamci/dnaa025 | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10332 | |
dc.description.abstract | In this paper, the control problem of microgrids (MGs)operating in islanded mode is approached from a passivity-based control perspective. A control scheme is proposed that, relying only on local measurements for the power converters included in the network representation, achieves both voltage regulation and power balance in the network through the generation of grid-forming and grid-following nodes. From the mathematical perspective, the importance of the contribution lies in the feature that, exploiting a port-controlled Hamiltonian representation of the MG, the closed-loop system’s stability properties are formally proved using arguments from the theory of non-linear dynamical systems. Fundamental for this achievement is the decomposition of the system into subsystems that require a control law and another whose variables can evolve in a free way. From the practical viewpoint, the advantage of the proposed controller lies in the feature that the power demanded by the loads is satisfied without neither computing its specific value nor solving the non-linear algebraic equations given by the power flow, avoiding the computational burden associated with this task. The usefulness of the scheme is illustrated via a numerical simulation that includes practical considerations. | spa |
dc.description.sponsorship | Universidad Tecnológica de Bolívar | spa |
dc.format.extent | 25 páginas | |
dc.format.medium | Recurso en línea / Electrónico | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | * |
dc.source | IMA Journal of Mathematical Control and Information, Volume 37, Issue 4, December 2020 | spa |
dc.title | Passivity-based control of islanded microgrids with unknown power loads | spa |
dcterms.bibliographicCitation | Arani, A. K., Karami, H., Gharehpetian, G. B. & Hejazi, M. S. A. (2017) Review of flywheel energy storage systems structures and applications in power systems and microgrids. Renew. Sust. Energ. Rev., 69, 9–18. | spa |
dcterms.bibliographicCitation | Agundis-Tinajero, G., Segundo-Ramirez, J., Visairo-Cruz, N., Savaghebi, M., Guerrero, J. M. & Barocio, E. (2019) Power flow modeling of islanded AC microgrids with hierarchical control. Int. J. Electr. Power Energy Syst., 105, 28–36. | spa |
dcterms.bibliographicCitation | Avila-Becerril, S. & Espinosa-Pérez, G. (2020) Control of islanded microgrids considering power converter dynamics. Int. J. Control., 1–11. https://doi.org/10.1080/00207179.2020.1713402 | spa |
dcterms.bibliographicCitation | Avila-Becerril, S., Espinosa-Pérez, G. & Machado, J. E. (2019) On the dynamic solution of power flow equations for microgrids control. 2019 58th IEEE Conference on Decision and Control (CDC). Nice, France, pp. 8423–8428. | spa |
dcterms.bibliographicCitation | Avila-Becerril, S., Montoya, O. D., Espinosa-Pérez, G. & Garcés, A. (2018) Control of a detailed model of microgrids from a Hamiltonian approach. IFAC-PapersOnLine, 51, 187–192 | spa |
dcterms.bibliographicCitation | Avila-Becerril, S., Espinosa-Pérez, G. & Fernandez, P. (2016) Dynamic characterization of typical electrical circuits via structural properties. Math. Probl. Eng., 2016. https://doi.org/10.1155/2016/7870462. | spa |
dcterms.bibliographicCitation | Bidram, A., Nasirian, V., Davoudi, A. & Lewis, F. L. (2017) Cooperative Synchronization in Distributed Microgrid Control. Springer International Publishing. | spa |
dcterms.bibliographicCitation | Bollobás, B. (1998) Modern Graph Theory, vol. 184. Springer Science & Business Media. | spa |
dcterms.bibliographicCitation | Bouzid, A. M., Guerrero, J. M., Cheriti, A., Bouhamida, M., Sicard, P. & Benghanem, M. (2015) A survey on control of electric power distributed generation systems for microgrid applications. Renew. Sust. Energ. Rev., 44, 751–766. | spa |
dcterms.bibliographicCitation | Cisneros, R., Pirro, M., Bergna, G., Ortega, R., Ippoliti, G. & Molinas, M. (2015) Global tracking passivitybased PI control of bilinear systems: application to the interleaved boost and modular multilevel converters. Control. Eng. Pract., 43, 109–119. | spa |
dcterms.bibliographicCitation | Gu, W., Wu, Z., Bo, R., Liu, W., Zhou, G., Chen, W. & Wu, Z. (2014) Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: a review. Int. J. Electr. Power Energy Syst., 54, 26–37. | spa |
dcterms.bibliographicCitation | Han, H., Hou, X., Yang, J., Wu, J., Su, M. & Guerrero, J. M. (2015) Review of power sharing control strategies for islanding operation of AC microgrids. IEEE Trans. Smart Grid, 7, 200–215. | spa |
dcterms.bibliographicCitation | Jayachandran, M. & Ravi, G. (2019) Decentralized model predictive hierarchical control strategy for islanded AC microgrids. Electr. Power Syst. Res., 170, 92–100. | spa |
dcterms.bibliographicCitation | Konstantopoulos, G., Zhong, Q. C., Ren, B. & Krstic, M. (2015) Bounded droop controller for parallel operation of inverters. Automatica, 53, 320–328. | spa |
dcterms.bibliographicCitation | Pogaku, N., Prodanovic, M. & Green, T. C. (2007) Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans. Power Electron., 22, 613–625. | spa |
dcterms.bibliographicCitation | Rojas, A. & Rousan, T. (2017) Microgrid control strategy: derived from stakeholder requirements analysis. IEEE Power Energy Mag., 15, 72–79. | spa |
dcterms.bibliographicCitation | Schiffer, J., Ortega, R., Astolfi, A., Raisch, J. & Sezi, T. (2014) Conditions for stability of droop-controlled inverter-based microgrids. Automatica, 50, 2457–2469 | spa |
dcterms.bibliographicCitation | Sepulchre, R., Jankovic, M. & Kokotovic, P. V. (2012) Constructive Nonlinear Control. Springer Science & Business Media. | spa |
dcterms.bibliographicCitation | Shuai, Z., Sun, Y., Shen, Z. J., Tian, W., Tu, C., Li, Y. & Yin, X. (2016) Microgrid stability: classification and a review. Renew. Sust. Energ. Rev., 58, 167–179. | spa |
dcterms.bibliographicCitation | Simpson-Porco, J. W., Dörfler, F. & Bullo, F. (2013) Synchronization and power sharing for droop-controlled inverters in islanded microgrids. Automatica, 49, 2603–2611. | spa |
dcterms.bibliographicCitation | Stegink, T., De Persis, C. & van der Schaft, A. (2016) A unifying energy-based approach to stability of power grids with market dynamics. IEEE Trans. Autom. Control, 62, 2612–2622. | spa |
dcterms.bibliographicCitation | Tuffner, F. K., Schneider, K. P., Hansen, J. & Elizondo, M. A. (2018) Modeling load dynamics to support resiliency-based operations in low-inertia microgrids. IEEE Trans. Smart Grid, 10, 2726–2737. | spa |
dcterms.bibliographicCitation | van der Schaft, A. J. & Maschke, B. M. (2013) Port-Hamiltonian systems on graphs. SIAM J. Control. Optim., 51, 906–937. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_b1a7d7d4d402bcce | spa |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/draft | spa |
dc.subject.keywords | Hamiltonian systems | spa |
dc.subject.keywords | Microgrids | spa |
dc.subject.keywords | Islanded operation mode | spa |
dc.subject.keywords | Passivity-based control | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Atribución-NoComercial 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_6501 | spa |
dc.audience | Investigadores | spa |
dc.publisher.sede | Campus Tecnológico | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.publisher.discipline | Ingeniería Eléctrica | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.