Mostrar el registro sencillo del ítem

dc.contributor.authorVillar-Salinas, Sergio
dc.contributor.authorGuzmán, Andrés
dc.contributor.authorCarrillo, Julián
dc.date.accessioned2021-02-17T21:05:24Z
dc.date.available2021-02-17T21:05:24Z
dc.date.issued2021-01
dc.date.submitted2021-02-17
dc.identifier.citationVillar-Salinas, S., Guzmán, A. and Carrillo, J., 2021. Performance evaluation of structures with reinforced concrete columns retrofitted with steel jacketing. Journal of Building Engineering, 33, p.101510.spa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10041
dc.description.abstractSeveral existing reinforced concrete (RC) buildings fail to conform with current seismic codes, increasing its susceptibility to damage and collapse during earthquakes. A concern for building upgrading and rehabilitation has grown considerably in the last decades. However, there is limited information related to the seismic performance of RC buildings retrofitted with steel jacketing. Retrofitting of RC buildings leads to different techniques that have been developed in the last decades. The selection of adequate techniques commonly depends on desired performance levels, financial criteria, or other non-technical judgment. This paper assesses the seismic performance of a six-story RC building retrofitted with steel jacketing that is located in Cartagena de Indias (Colombia). The building was designed and constructed in 2010 without considering the requirements prescribed by the NSR-10 Colombian code. In 2017, another building collapsed in the same city for several non-compliances with Colombian seismic code. This investigation focuses on the seismic upgrading of the building, studying the influence of different material properties of the existing building and load scenarios on the building behavior. The proposed steel jacketing improves the compressive and flexural capacity of retrofitted columns, along with the ductility of the building.spa
dc.format.extent14 páginas
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceJournal of Building Engineering Volume 33, January 2021, 101510spa
dc.titlePerformance evaluation of structures with reinforced concrete columns retrofitted with steel jacketingspa
dcterms.bibliographicCitationH. Abou-Elfath, M. Ramadan, F. Omar Alkanai, Upgrading the seismic capacity of existing RC buildings using buckling restrained braces, Alexandria Engineering Journal 56 (2017) 251–262, https://doi.org/10.1016/j.aej.2016.11.018.spa
dcterms.bibliographicCitationJ.P. Moehle, State of Research on Seismic Retrofit of Concrete Building Structures in the US, US-Japan Symposium and Workshop on Seismic Retrofit of Concrete Structures, 2000, p. 16.spa
dcterms.bibliographicCitationP. Ricci, F. De Luca, G.M. Verderame, 6th April 2009 L’Aquila earthquake, Italy: reinforced concrete building performance, Bull. Earthq. Eng. 9 (2011) 285–305, https://doi.org/10.1007/s10518-010-9204-8spa
dcterms.bibliographicCitationH. Sezen, A.S. Whittaker, K.J. Elwood, K.M. Mosalam, Performance of Reinforced Concrete Buildings during the August 17, 1999 Kocaeli, Turkey Earthquake, and Seismic Design and Construction Practise in Turkey, Eng. Struct. vol. 25 (2003) 103–114, https://doi.org/10.1016/S0141-0296(02)00121-9.spa
dcterms.bibliographicCitationV. Singh Rawat, Increasing the Strength of Existing Building Using Steel Jacketing in Seismic Zone. https://doi.org/10.14445/23488352/IJCE-V4I12P102, 2017.spa
dcterms.bibliographicCitationR.S. Aboutaha, M. Engelhardt, J.O. Jirsa, M.E. Kreger, Rehabilitation of Shear Critical Concrete Columns by Use of Rectangular Steel Jackets, 1999.spa
dcterms.bibliographicCitationH. Fukuyama, S. Sugano, Japanese seismic rehabilitation of concrete buildings after the Hyogoken-Nanbu Earthquake, Cement Concr. Compos. 22 (2000) 59–79, https://doi.org/10.1016/S0958-9465(99)00042-6.spa
dcterms.bibliographicCitationAIS, Reglamento colombiano de construccion � sismo resistente, NSR-10, Asociacion � de ingeniería sísmica, Bogota, � Colombia, 2010.spa
dcterms.bibliographicCitationF.E.M.A.74 Fema, Reducing the Risks of Nonstructural Earthquake Damage, A Practical Guide, 1994. https://www.fema.gov/media-library-data/20130726- 1721-25045-8384/fema_74_3rd_ed.pdf.spa
dcterms.bibliographicCitationS. Pampanin, U. Akguzel, G. Attanasi, Seismic upgrading of 3-D exterior R.C. Beam Column Joints Subjected to Bi-directional Cyclic Loading Using GFRP Composites, 2019.spa
dcterms.bibliographicCitationJ.M. Castro, M. Araújo, M. D’Aniello, R. Landolfo, Strengthening of RC buildings with steel elements, in: A. Costa, A. Ar^ede, H. Varum (Eds.), Strengthening and Retrofitting of Existing Structures, Springer Singapore, Singapore, 2018, pp. 139–162, https://doi.org/10.1007/978-981-10-5858-5_6.spa
dcterms.bibliographicCitationJ. Melo, D.A. Pohoryles, T. Rossetto, H. Varum, Performance Comparison of RC Retrofitted Interior Beam-Column Joints with CFRP and Steel Plates, 2017.spa
dcterms.bibliographicCitationGeorgios Tsionis, Fabio Taucer, Roberta Apostolska, Effectiveness of Techniques for Seismic Strengthening of RC Frame Buildings, 2015, pp. 1–8.spa
dcterms.bibliographicCitationF. Nateghi-A, Seismic strengthening of eightstorey RC apartment building using steel braces, Eng. Struct. 17 (1995) 455–461, https://doi.org/10.1016/0141-0296 (95)00071-E.spa
dcterms.bibliographicCitationR. Azarm, M.R. Maheri, A. Torabi, Retrofitting RC joints using flange-bonded FRP sheets, Iranian Journal of Science and Technology, Transactions of Civil Engineering 41 (2017) 27–35, https://doi.org/10.1007/s40996-016-0028-x.spa
dcterms.bibliographicCitationA. Costa, A. Ar^ede, H. Varum, Strengthening and Retrofitting of Existing Structures, Springer Singapore, 2017. https://books.google.com.co/books?id¼Ge8 5DwAAQBAJ.spa
dcterms.bibliographicCitationS.A. Hadigheh, M. Maheri, S. Mahini, Performance of Weak-Beam, Strong-Column RC Frames Strengthened at the Joints by FRP, 2013.spa
dcterms.bibliographicCitationC.Y. Osman Kaya Azadeh Parvin, Selçuk Altay, Retrofitting of reinforced concrete beam-column joints by composites—Part I: experimental study, Structural Journal 116 (2019), https://doi.org/10.14359/51706922.spa
dcterms.bibliographicCitationA. Ilki, E. Tore, C. Demir, M. Comert, Seismic performance of a full-scale FRP retrofitted sub-standard RC building, in: K. Pitilakis (Ed.), Recent Advances in Earthquake Engineering in Europe: 16th European Conference on Earthquake Engineering-Thessaloniki 2018, Springer International Publishing, Cham, 2018, pp. 519–544, https://doi.org/10.1007/978-3-319-75741-4_22.spa
dcterms.bibliographicCitationU. Akguzel, S. Pampanin, Effect of Axial Load Variation on the Retrofit of Exterior Reinforced Concrete Beam-Column Joints, 2019.spa
dcterms.bibliographicCitationN. Islam, M.M. Hoque, Strengthening of reinforced concrete columns by steel jacketing: a state of review, Asian Trans. Eng. 5 (2015).spa
dcterms.bibliographicCitationA. Torabi, M.R. Maheri, Seismic repair and retrofit of RC beam–column joints using stiffened steel plates, Iranian Journal of Science and Technology, Transactions of Civil Engineering 41 (2017) 13–26, https://doi.org/10.1007/s40996-016-0027-y.spa
dcterms.bibliographicCitationFEMA 440 (ATC-55), Improvement of Nonlinear Static Seismic Analysis Procedures, 2005.spa
dcterms.bibliographicCitationASCE/SEI 41-17, Seismic Evaluation and Retrofit of Existing Buildings, 2017, https://doi.org/10.1061/9780784414859.spa
dcterms.bibliographicCitationACI 318, Building Code Requirements for Structural Concrete and Commentary, 2014 accessed, https://www.concrete.org/store/productdetail.aspx?ItemID¼3181 4&Format¼PROTECTED_PDF&Language¼English&Units¼US_Units. (Accessed 14 February 2019).spa
dcterms.bibliographicCitationAISC 360, Specification for Structural Steel Buildings, 2016 accessed, https://www.aisc. org/Specification-for-Structural-Steel-Buildings-ANSIAISC-360-16-1#.XG XrjlxKjIU. (Accessed 14 February 2019).spa
dcterms.bibliographicCitationG.G. Meyerhof, The ultimate bearing capacity of foundations, Geotechnique 2 (1951) 301–332, https://doi.org/10.1680/geot.1951.2.4.301.spa
dcterms.bibliographicCitationK. Terzaghi, R.B. Peck, G. Mesri, Soil Mechanics in Engineering Practice, John Wiley & Sons, 1996.spa
dcterms.bibliographicCitationB. Benmokrane, B. Zhang, A. Chennouf, Tensile properties and pullout behaviour of AFRP and CFRP rods for grouted anchor applications, Construct. Build. Mater. 14 (2000) 157–170, https://doi.org/10.1016/S0950-0618(00)00017-9.spa
dcterms.bibliographicCitationJ. Mander, M. Priestley, Park, Theoretical stress–strain model for confined concrete, American Society of Civil Engineers 114 (1988) 1804–1826.spa
dcterms.bibliographicCitationJ.E. Martínez-Rueda, A.S. Elnashai, Confined concrete model under cyclic load, Mater. Struct. 30 (1997) 139–147, https://doi.org/10.1007/BF02486385.spa
dcterms.bibliographicCitationS. Elkholy, B.E. Ariss, Enhanced external progressive collapse mitigation scheme for RC structures, Int. J. Struct. Eng. 7 (2016) 63, https://doi.org/10.1504/ IJSTRUCTE.2016.073679.spa
dcterms.bibliographicCitationA. Charney Finley, Seismic loads: guide to the seismic load, Provisions of ASCE 7–10 (2015), https://doi.org/10.1061/9780784413524spa
dcterms.bibliographicCitationComputer and Structures Inc, Concrete Frame Design Manual ACI 318-11 for SAP 2000, 2016 accessed, http://docs.csiamerica.com/manuals/sap2000/Design /CFD-ACI-318-11.pdf. (Accessed 9 February 2019).spa
dcterms.bibliographicCitationD. Saborio-Romano, G.J. O’Reilly, D.P. Welch, L. Landi, Simplified pushover analysis of moment resisting frame structures AU - sullivan, Timothy J., Journal of Earthquake Engineering (2018) 1–28, https://doi.org/10.1080/ 13632469.2018.1528911.spa
dcterms.bibliographicCitationR. Sheth, J. Prajapati, D. Soni, Comparative study nonlinear static pushover analysis and displacement based adaptive pushover analysis method, Int. J. Struct. Eng. 9 (2018) 81–90, https://doi.org/10.1504/IJSTRUCTE.2018.090753.spa
dcterms.bibliographicCitationAzarbakht Alireza, Dol�sek Matja�z, Progressive incremental dynamic analysis for first-mode dominated structures, J. Struct. Eng. 137 (2011) 445–455, https://doi. org/10.1061/(ASCE)ST.1943-541X.0000282.spa
dcterms.bibliographicCitationS.W. Han, A.K. Chopra, Approximate incremental dynamic analysis using the modal pushover analysis procedure, Earthq. Eng. Struct. Dynam. 35 (2006) 1853–1873, https://doi.org/10.1002/eqe.605.spa
dcterms.bibliographicCitationD. Vamvatsikos, Performing incremental dynamic analysis in parallel, Comput. Struct. 89 (2011) 170–180, https://doi.org/10.1016/j.compstruc.2010.08.014.spa
dcterms.bibliographicCitationG.P. Cimellaro, T. Giovine, D. Lopez-Garcia, Bidirectional pushover analysis of irregular structures, J. Struct. Eng. 140 (2014), 04014059, https://doi.org/ 10.1061/(ASCE)ST.1943-541X.0001032.spa
dcterms.bibliographicCitationQ.-S. “Kent” Yu, R. Pugliesi, M. Allen, C. Bischoff, Assessment of modal pushover analysis procedure and its application to seismic evaluation of existing buildings. 13th World Conference on Earthquake Engineering, Canada, � Vancouver, 2004. Paper No. 1104.spa
dcterms.bibliographicCitationT.Y.P. Yuen, J.S. Kuang, D.Y.B. Ho, Ductility design of RC columns. Part 1: consideration of axial compression ratio, Trans. Hong Kong Inst. Eng. 23 (2016) 230–244, https://doi.org/10.1080/1023697X.2016.1232179.spa
dcterms.bibliographicCitationAIS, NSR-10, Reglamento colombiano de Construccion � sismo resistente, 2010. Bogot� a, DC.spa
dcterms.bibliographicCitationA. Neville, Core tests: easy to perform, not easy to interpret, Concr. Int. 23 (2001) 59–68.spa
datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S2352710219327986
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.identifier.doi10.1016/j.jobe.2020.101510
dc.subject.keywordsSeismic performancespa
dc.subject.keywordsSeismic retrofittingspa
dc.subject.keywordsRC buildingsspa
dc.subject.keywordsNonlinear modelingspa
dc.subject.keywordsSteel jacketingspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.publisher.placeCartagena de Indiasspa
dc.subject.armarcLEMB
dc.type.spahttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.audienceInvestigadoresspa
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.