Mostrar el registro sencillo del ítem
Performance evaluation of structures with reinforced concrete columns retrofitted with steel jacketing
dc.contributor.author | Villar-Salinas, Sergio | |
dc.contributor.author | Guzmán, Andrés | |
dc.contributor.author | Carrillo, Julián | |
dc.date.accessioned | 2021-02-17T21:05:24Z | |
dc.date.available | 2021-02-17T21:05:24Z | |
dc.date.issued | 2021-01 | |
dc.date.submitted | 2021-02-17 | |
dc.identifier.citation | Villar-Salinas, S., Guzmán, A. and Carrillo, J., 2021. Performance evaluation of structures with reinforced concrete columns retrofitted with steel jacketing. Journal of Building Engineering, 33, p.101510. | spa |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/10041 | |
dc.description.abstract | Several existing reinforced concrete (RC) buildings fail to conform with current seismic codes, increasing its susceptibility to damage and collapse during earthquakes. A concern for building upgrading and rehabilitation has grown considerably in the last decades. However, there is limited information related to the seismic performance of RC buildings retrofitted with steel jacketing. Retrofitting of RC buildings leads to different techniques that have been developed in the last decades. The selection of adequate techniques commonly depends on desired performance levels, financial criteria, or other non-technical judgment. This paper assesses the seismic performance of a six-story RC building retrofitted with steel jacketing that is located in Cartagena de Indias (Colombia). The building was designed and constructed in 2010 without considering the requirements prescribed by the NSR-10 Colombian code. In 2017, another building collapsed in the same city for several non-compliances with Colombian seismic code. This investigation focuses on the seismic upgrading of the building, studying the influence of different material properties of the existing building and load scenarios on the building behavior. The proposed steel jacketing improves the compressive and flexural capacity of retrofitted columns, along with the ductility of the building. | spa |
dc.format.extent | 14 páginas | |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.source | Journal of Building Engineering Volume 33, January 2021, 101510 | spa |
dc.title | Performance evaluation of structures with reinforced concrete columns retrofitted with steel jacketing | spa |
dcterms.bibliographicCitation | H. Abou-Elfath, M. Ramadan, F. Omar Alkanai, Upgrading the seismic capacity of existing RC buildings using buckling restrained braces, Alexandria Engineering Journal 56 (2017) 251–262, https://doi.org/10.1016/j.aej.2016.11.018. | spa |
dcterms.bibliographicCitation | J.P. Moehle, State of Research on Seismic Retrofit of Concrete Building Structures in the US, US-Japan Symposium and Workshop on Seismic Retrofit of Concrete Structures, 2000, p. 16. | spa |
dcterms.bibliographicCitation | P. Ricci, F. De Luca, G.M. Verderame, 6th April 2009 L’Aquila earthquake, Italy: reinforced concrete building performance, Bull. Earthq. Eng. 9 (2011) 285–305, https://doi.org/10.1007/s10518-010-9204-8 | spa |
dcterms.bibliographicCitation | H. Sezen, A.S. Whittaker, K.J. Elwood, K.M. Mosalam, Performance of Reinforced Concrete Buildings during the August 17, 1999 Kocaeli, Turkey Earthquake, and Seismic Design and Construction Practise in Turkey, Eng. Struct. vol. 25 (2003) 103–114, https://doi.org/10.1016/S0141-0296(02)00121-9. | spa |
dcterms.bibliographicCitation | V. Singh Rawat, Increasing the Strength of Existing Building Using Steel Jacketing in Seismic Zone. https://doi.org/10.14445/23488352/IJCE-V4I12P102, 2017. | spa |
dcterms.bibliographicCitation | R.S. Aboutaha, M. Engelhardt, J.O. Jirsa, M.E. Kreger, Rehabilitation of Shear Critical Concrete Columns by Use of Rectangular Steel Jackets, 1999. | spa |
dcterms.bibliographicCitation | H. Fukuyama, S. Sugano, Japanese seismic rehabilitation of concrete buildings after the Hyogoken-Nanbu Earthquake, Cement Concr. Compos. 22 (2000) 59–79, https://doi.org/10.1016/S0958-9465(99)00042-6. | spa |
dcterms.bibliographicCitation | AIS, Reglamento colombiano de construccion � sismo resistente, NSR-10, Asociacion � de ingeniería sísmica, Bogota, � Colombia, 2010. | spa |
dcterms.bibliographicCitation | F.E.M.A.74 Fema, Reducing the Risks of Nonstructural Earthquake Damage, A Practical Guide, 1994. https://www.fema.gov/media-library-data/20130726- 1721-25045-8384/fema_74_3rd_ed.pdf. | spa |
dcterms.bibliographicCitation | S. Pampanin, U. Akguzel, G. Attanasi, Seismic upgrading of 3-D exterior R.C. Beam Column Joints Subjected to Bi-directional Cyclic Loading Using GFRP Composites, 2019. | spa |
dcterms.bibliographicCitation | J.M. Castro, M. Araújo, M. D’Aniello, R. Landolfo, Strengthening of RC buildings with steel elements, in: A. Costa, A. Ar^ede, H. Varum (Eds.), Strengthening and Retrofitting of Existing Structures, Springer Singapore, Singapore, 2018, pp. 139–162, https://doi.org/10.1007/978-981-10-5858-5_6. | spa |
dcterms.bibliographicCitation | J. Melo, D.A. Pohoryles, T. Rossetto, H. Varum, Performance Comparison of RC Retrofitted Interior Beam-Column Joints with CFRP and Steel Plates, 2017. | spa |
dcterms.bibliographicCitation | Georgios Tsionis, Fabio Taucer, Roberta Apostolska, Effectiveness of Techniques for Seismic Strengthening of RC Frame Buildings, 2015, pp. 1–8. | spa |
dcterms.bibliographicCitation | F. Nateghi-A, Seismic strengthening of eightstorey RC apartment building using steel braces, Eng. Struct. 17 (1995) 455–461, https://doi.org/10.1016/0141-0296 (95)00071-E. | spa |
dcterms.bibliographicCitation | R. Azarm, M.R. Maheri, A. Torabi, Retrofitting RC joints using flange-bonded FRP sheets, Iranian Journal of Science and Technology, Transactions of Civil Engineering 41 (2017) 27–35, https://doi.org/10.1007/s40996-016-0028-x. | spa |
dcterms.bibliographicCitation | A. Costa, A. Ar^ede, H. Varum, Strengthening and Retrofitting of Existing Structures, Springer Singapore, 2017. https://books.google.com.co/books?id¼Ge8 5DwAAQBAJ. | spa |
dcterms.bibliographicCitation | S.A. Hadigheh, M. Maheri, S. Mahini, Performance of Weak-Beam, Strong-Column RC Frames Strengthened at the Joints by FRP, 2013. | spa |
dcterms.bibliographicCitation | C.Y. Osman Kaya Azadeh Parvin, Selçuk Altay, Retrofitting of reinforced concrete beam-column joints by composites—Part I: experimental study, Structural Journal 116 (2019), https://doi.org/10.14359/51706922. | spa |
dcterms.bibliographicCitation | A. Ilki, E. Tore, C. Demir, M. Comert, Seismic performance of a full-scale FRP retrofitted sub-standard RC building, in: K. Pitilakis (Ed.), Recent Advances in Earthquake Engineering in Europe: 16th European Conference on Earthquake Engineering-Thessaloniki 2018, Springer International Publishing, Cham, 2018, pp. 519–544, https://doi.org/10.1007/978-3-319-75741-4_22. | spa |
dcterms.bibliographicCitation | U. Akguzel, S. Pampanin, Effect of Axial Load Variation on the Retrofit of Exterior Reinforced Concrete Beam-Column Joints, 2019. | spa |
dcterms.bibliographicCitation | N. Islam, M.M. Hoque, Strengthening of reinforced concrete columns by steel jacketing: a state of review, Asian Trans. Eng. 5 (2015). | spa |
dcterms.bibliographicCitation | A. Torabi, M.R. Maheri, Seismic repair and retrofit of RC beam–column joints using stiffened steel plates, Iranian Journal of Science and Technology, Transactions of Civil Engineering 41 (2017) 13–26, https://doi.org/10.1007/s40996-016-0027-y. | spa |
dcterms.bibliographicCitation | FEMA 440 (ATC-55), Improvement of Nonlinear Static Seismic Analysis Procedures, 2005. | spa |
dcterms.bibliographicCitation | ASCE/SEI 41-17, Seismic Evaluation and Retrofit of Existing Buildings, 2017, https://doi.org/10.1061/9780784414859. | spa |
dcterms.bibliographicCitation | ACI 318, Building Code Requirements for Structural Concrete and Commentary, 2014 accessed, https://www.concrete.org/store/productdetail.aspx?ItemID¼3181 4&Format¼PROTECTED_PDF&Language¼English&Units¼US_Units. (Accessed 14 February 2019). | spa |
dcterms.bibliographicCitation | AISC 360, Specification for Structural Steel Buildings, 2016 accessed, https://www.aisc. org/Specification-for-Structural-Steel-Buildings-ANSIAISC-360-16-1#.XG XrjlxKjIU. (Accessed 14 February 2019). | spa |
dcterms.bibliographicCitation | G.G. Meyerhof, The ultimate bearing capacity of foundations, Geotechnique 2 (1951) 301–332, https://doi.org/10.1680/geot.1951.2.4.301. | spa |
dcterms.bibliographicCitation | K. Terzaghi, R.B. Peck, G. Mesri, Soil Mechanics in Engineering Practice, John Wiley & Sons, 1996. | spa |
dcterms.bibliographicCitation | B. Benmokrane, B. Zhang, A. Chennouf, Tensile properties and pullout behaviour of AFRP and CFRP rods for grouted anchor applications, Construct. Build. Mater. 14 (2000) 157–170, https://doi.org/10.1016/S0950-0618(00)00017-9. | spa |
dcterms.bibliographicCitation | J. Mander, M. Priestley, Park, Theoretical stress–strain model for confined concrete, American Society of Civil Engineers 114 (1988) 1804–1826. | spa |
dcterms.bibliographicCitation | J.E. Martínez-Rueda, A.S. Elnashai, Confined concrete model under cyclic load, Mater. Struct. 30 (1997) 139–147, https://doi.org/10.1007/BF02486385. | spa |
dcterms.bibliographicCitation | S. Elkholy, B.E. Ariss, Enhanced external progressive collapse mitigation scheme for RC structures, Int. J. Struct. Eng. 7 (2016) 63, https://doi.org/10.1504/ IJSTRUCTE.2016.073679. | spa |
dcterms.bibliographicCitation | A. Charney Finley, Seismic loads: guide to the seismic load, Provisions of ASCE 7–10 (2015), https://doi.org/10.1061/9780784413524 | spa |
dcterms.bibliographicCitation | Computer and Structures Inc, Concrete Frame Design Manual ACI 318-11 for SAP 2000, 2016 accessed, http://docs.csiamerica.com/manuals/sap2000/Design /CFD-ACI-318-11.pdf. (Accessed 9 February 2019). | spa |
dcterms.bibliographicCitation | D. Saborio-Romano, G.J. O’Reilly, D.P. Welch, L. Landi, Simplified pushover analysis of moment resisting frame structures AU - sullivan, Timothy J., Journal of Earthquake Engineering (2018) 1–28, https://doi.org/10.1080/ 13632469.2018.1528911. | spa |
dcterms.bibliographicCitation | R. Sheth, J. Prajapati, D. Soni, Comparative study nonlinear static pushover analysis and displacement based adaptive pushover analysis method, Int. J. Struct. Eng. 9 (2018) 81–90, https://doi.org/10.1504/IJSTRUCTE.2018.090753. | spa |
dcterms.bibliographicCitation | Azarbakht Alireza, Dol�sek Matja�z, Progressive incremental dynamic analysis for first-mode dominated structures, J. Struct. Eng. 137 (2011) 445–455, https://doi. org/10.1061/(ASCE)ST.1943-541X.0000282. | spa |
dcterms.bibliographicCitation | S.W. Han, A.K. Chopra, Approximate incremental dynamic analysis using the modal pushover analysis procedure, Earthq. Eng. Struct. Dynam. 35 (2006) 1853–1873, https://doi.org/10.1002/eqe.605. | spa |
dcterms.bibliographicCitation | D. Vamvatsikos, Performing incremental dynamic analysis in parallel, Comput. Struct. 89 (2011) 170–180, https://doi.org/10.1016/j.compstruc.2010.08.014. | spa |
dcterms.bibliographicCitation | G.P. Cimellaro, T. Giovine, D. Lopez-Garcia, Bidirectional pushover analysis of irregular structures, J. Struct. Eng. 140 (2014), 04014059, https://doi.org/ 10.1061/(ASCE)ST.1943-541X.0001032. | spa |
dcterms.bibliographicCitation | Q.-S. “Kent” Yu, R. Pugliesi, M. Allen, C. Bischoff, Assessment of modal pushover analysis procedure and its application to seismic evaluation of existing buildings. 13th World Conference on Earthquake Engineering, Canada, � Vancouver, 2004. Paper No. 1104. | spa |
dcterms.bibliographicCitation | T.Y.P. Yuen, J.S. Kuang, D.Y.B. Ho, Ductility design of RC columns. Part 1: consideration of axial compression ratio, Trans. Hong Kong Inst. Eng. 23 (2016) 230–244, https://doi.org/10.1080/1023697X.2016.1232179. | spa |
dcterms.bibliographicCitation | AIS, NSR-10, Reglamento colombiano de Construccion � sismo resistente, 2010. Bogot� a, DC. | spa |
dcterms.bibliographicCitation | A. Neville, Core tests: easy to perform, not easy to interpret, Concr. Int. 23 (2001) 59–68. | spa |
datacite.rights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S2352710219327986 | |
dc.type.driver | info:eu-repo/semantics/article | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.identifier.doi | 10.1016/j.jobe.2020.101510 | |
dc.subject.keywords | Seismic performance | spa |
dc.subject.keywords | Seismic retrofitting | spa |
dc.subject.keywords | RC buildings | spa |
dc.subject.keywords | Nonlinear modeling | spa |
dc.subject.keywords | Steel jacketing | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.cc | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | * |
dc.identifier.instname | Universidad Tecnológica de Bolívar | spa |
dc.identifier.reponame | Repositorio Universidad Tecnológica de Bolívar | spa |
dc.publisher.place | Cartagena de Indias | spa |
dc.subject.armarc | LEMB | |
dc.type.spa | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
dc.audience | Investigadores | spa |
oaire.resourcetype | http://purl.org/coar/resource_type/c_2df8fbb1 | spa |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
-
Productos de investigación [1453]
Universidad Tecnológica de Bolívar - 2017 Institución de Educación Superior sujeta a inspección y vigilancia por el Ministerio de Educación Nacional. Resolución No 961 del 26 de octubre de 1970 a través de la cual la Gobernación de Bolívar otorga la Personería Jurídica a la Universidad Tecnológica de Bolívar.