Publicación:
Global complexity signatures of solar cycles: a unified entropy–fractal survey of OMNI solar wind data (1964–2025)

dc.contributor.authorSierra Porta, David
dc.contributor.authorCanedo Verdugo, Maximiliano
dc.contributor.authorHerrera Acevedo, Daniel David
dc.date.accessioned2025-09-30T13:08:56Z
dc.date.issued2025
dc.description.abstractBackground — Traditional solar-cycle studies emphasize amplitude- and duration-based indicators, overlooking the intrinsic complexity of heliospheric fluctuations. Entropy- and fractal-based descriptors offer complementary insight, but a cycle-resolved assessment across multiple observables has been missing. Methods—Using daily OMNI-2 data (1964–2025), we segment each solar cycle (20–25) into ascending and descending phases and compute eleven global complexity measures per cycle–phase segment for ten solar-wind and geomagnetic observables. The metrics cover information content (Shannon, spectral), dynamical regularity (approximate, sample, permutation), geometric roughness (Higuchi, Katz, Petrosian), algorithmic novelty (Lempel–Ziv), and long-range memory (Hurst). We analyse redundancy and physical linkages via correlations and principal-component analysis (PCA), and quantify within-cycle phase contrasts using paired nonparametric tests with bootstrap effect sizes. Cycle parity is tested with permutation-based linear models controlling for the physical variable. Results — Two orthogonal axes summarize the landscape: an amplitude–breadth direction (dominated by Shannon/spectral entropy) and a temporal-irregularity direction (ordinal entropies and Higuchi), while Lempel–Ziv forms an almost independent third dimension. Crucially, phase—not odd/even parity—organizes the dominant variability: ascending halves maximize multiscale roughness, whereas descending halves show broader amplitude dispersion and higher algorithmic novelty. Cross-metric–observable maps tie these facets to known regimes: fast streams and composition-rich intervals (e.g., larger ω/p) raise ordinal richness and LZ; storm-time geomagnetic response (Dst, Kp) aligns with antipersistence and space-filling trajectories.
dc.format.extent18 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.citationSierra-Porta, D., Canedo Verdugo, M., & Herrera Acevedo, D. D. (2025). Global complexity signatures of solar cycles: A unified Entropy–Fractal survey of OMNI solar wind data (1964–2025). Advances in Space Research. https://doi.org/10.1016/j.asr.2025.09.072
dc.identifier.doihttps://doi.org/10.1016/j.asr.2025.09.072
dc.identifier.urihttps://hdl.handle.net/20.500.12585/14200
dc.language.isoeng
dc.relation.referencesAcosta-Tripailao, B., Pastén, D., & Moya, P. S. (2023). Complexity parameters of solar-wind magnetic fluctuations at 1 au during sc23 and sc24. Astronomy & 436 Astrophysics, 671, A108. doi:https://doi.org/10.1051/0004-6361/202245265
dc.relation.referencesAlberti, T., Consolini, G., Carbone, V. et al. (2019). Multifractal and chaotic properties of solar wind at mhd and kinetic domains: An empirical mode decomposition 437 approach. Entropy, 21(3), 320. doi:https://doi.org/10.3390/e21030320.
dc.relation.referencesAlberti, T., Milillo, A., Heyner, D. et al. (2022). The “singular” behavior of the solar wind scaling features during parker solar probe–bepicolombo radial alignment. 439 The Astrophysical Journal, 926(2), 174. doi:https://doi.org/10.3847/1538-4357/ac478d.
dc.relation.referencesBandt, C., & Pompe, B. (2002). Permutation entropy: a natural complexity measure for time series. Physical review letters, 88(17), 174102. doi:https://doi. 441 org/10.1103/PhysRevLett.88.174102.
dc.relation.referencesCarbone, V., Cavazzana, R., Antoni, V. et al. (2002). To what extent can dynamical models describe statistical features of turbulent flows? Europhysics letters, 443 58(3), 349. doi:https://doi.org/10.1209/epl/i2002-00645-y.
dc.relation.referencesCarlsson, G., & Vejdemo-Johansson, M. (2021). Topological data analysis with applications. Cambridge University Press. URL: https://lccn.loc.gov/ 445 2021024970. doi:https://doi.org/10.1017/9781108975704.
dc.relation.referencesCeballos, R. F., & Largo, F. F. (2017). On the estimation of the hurst exponent using adjusted rescaled range analysis, detrended fluctuation analysis and variance 447 time plot: A case of exponential distribution. arXiv: Computation, . URL: https://api.semanticscholar.org/CorpusID:88523447.
dc.relation.referencesChazal, F., & Michel, B. (2021). An introduction to topological data analysis: fundamental and practical aspects for data scientists. Frontiers in artificial intelligence, 449 4, 667963. doi:https://doi.org/10.3389/frai.2021.667963.
dc.relation.referencesChen, R.-C., Dewi, C., Zhuang, Y.-C. et al. (2023). Contrast limited adaptive histogram equalization for recognizing road marking at night based on yolo models. 451 IEEE Access, 11, 92926–92942. URL: https://api.semanticscholar.org/CorpusID:261310687. doi:https://doi.org/10.1109/ACCESS.2023. 452 3309410.
dc.relation.referencesConsolini, G., & De Michelis, P. (2023). A joint multifractal approach to solar wind turbulence. Fractal and Fractional, 7(10), 748. doi:https://doi.org/10. 454 3390/fractalfract7100748.
dc.relation.referencesDmitriev, A. V., Suvorova, A. V., & Veselovsky, I. S. (2013). Statistical characteristics of the heliospheric plasma and magnetic field at the earth’s orbit during four 458 solar cycles 20-23. arXiv: Space Physics, . URL: https://api.semanticscholar.org/CorpusID:118394361.
dc.relation.referencesFalayi, E., Adewole, A., Adelaja, A. et al. (2020). Study of nonlinear time series and wavelet power spectrum analysis using solar wind parameters and geomagnetic 465 indices. NRIAG Journal of Astronomy and Geophysics, 9(1), 226–237. doi:https://doi.org/10.1080/20909977.2020.1728866.
dc.relation.referencesInouye, T., Shinosaki, K., Sakamoto, H. et al. (1991). Quantification of eeg irregularity by use of the entropy of the power spectrum. Electroencephalography and 471 clinical neurophysiology, 79(3), 204–210. doi:https://doi.org/10.1016/0013-4694(91)90138-T.
dc.relation.referencesManshour, P., Balasis, G., Consolini, G. et al. (2021). Causality and information transfer between the solar wind and the magnetosphere–ionosphere system. 487 Entropy, 23(4), 390. doi:https://doi.org/10.3390/e23040390.
dc.relation.referencesPeng-jian, S. (2007). Analysis of multifractal detrended fluctuation in stock market time series. Journal of Beijing Jiaotong University, . URL: https://api. 498 semanticscholar.org/CorpusID:156551200.
dc.relation.referencesPincus, S. M. (1991). Approximate entropy as a measure of system complexity. Proceedings of the national academy of sciences, 88(6), 2297–2301. doi:https: 502 //doi.org/10.1073/pnas.88.6.2297.
dc.relation.referencesRichardson, J. D., & Paularena, K. I. (2001). Plasma and magnetic field correlations in the solar wind. Journal of Geophysical Research: Space Physics, 106(A1), 505 239–251. doi:https://doi.org/10.1029/2000JA000071.
dc.relation.referencesRichman, J. S., & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American journal of physiology-heart 510 and circulatory physiology, 278(6), H2039–H2049. doi:https://doi.org/10.1152/ajpheart.2000.278.6.H2039.
dc.relation.referencesSierra-Porta, D. (2024). Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis 516 techniques. Chaos: An Interdisciplinary Journal of Nonlinear Science, 34(2). doi:https://doi.org/10.1063/5.0167156.
dc.relation.referencesSierra-Porta, D. (2024). Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques. Chaos: An Interdisciplinary Journal of Nonlinear Science, 34(2). doi:https://doi.org/10.1063/5.0167156.
dc.relation.referencesSierra-Porta, D. (2025). Multifractal detrended cross-correlation coefficient for cosmic ray and sunspot time series. Journal of Atmospheric and Solar-Terrestrial 518 Physics, 266, 106407. doi:https://doi.org/10.1016/j.jastp.2024.106407.
dc.relation.referencesSierra-Porta, D., & Domínguez-Monterroza, A.-R. (2022). Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis. 520 Physica A: Statistical Mechanics and its Applications, 607, 128159. doi:https://doi.org/10.1016/j.physa.2022.128159.
dc.relation.referencesZozor, S., Ravier, P., & Buttelli, O. (2005). On lempel–ziv complexity for multidimensional data analysis. Physica A-statistical Mechanics and Its Applications, 538 345, 285–302. URL: https://api.semanticscholar.org/CorpusID:26659917. doi:https://doi.org/10.1016/J.PHYSA.2004.07.025.
dc.subject.ddc520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos
dc.subject.lembSolar physics -- Research
dc.subject.lembSolar cycles
dc.subject.lembSolar wind
dc.subject.lembEntropy (Physics)
dc.subject.lembFractals -- Applications in astrophysics
dc.subject.lembComplexity (Science) -- Mathematical models
dc.subject.lembSpace weather
dc.subject.lembGeomagnetism
dc.subject.ocde1. Ciencias Naturales::1C. Ciencias físicas::1C08. Astronomía
dc.subject.odsODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
dc.subject.odsODS 13: Acción por el Clima. Adoptar medidas urgentes para combatir el cambio climático y sus efectos
dc.subject.proposalGlobal complexity
dc.subject.proposalSolar cycles
dc.subject.proposalEntropy
dc.subject.proposalFractals
dc.subject.proposalSolar wind
dc.subject.proposalHeliosphere
dc.subject.proposalGeomagnetic dynamics
dc.subject.proposalSpace weather prediction
dc.titleGlobal complexity signatures of solar cycles: a unified entropy–fractal survey of OMNI solar wind data (1964–2025)
dc.typeArtículo de revista
dc.type.contentText
dspace.entity.typePublication
relation.isAuthorOfPublication996a607a-3eb1-4484-8978-ed736b9fc0b7
relation.isAuthorOfPublication.latestForDiscovery996a607a-3eb1-4484-8978-ed736b9fc0b7

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
artco.pdf
Tamaño:
2.82 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: