Publicación:
Statistical Analysis to Quantify the Impact of Map Type on Estimating Peak Discharge in Non-Instrumented Basins

dc.contributor.authorSierra-Sánchez, Alexandraeng
dc.contributor.authorPaternina-Verona, Duban A. eng
dc.contributor.authorGatica, Gustavoeng
dc.contributor.authorRamos, Helena M.eng
dc.contributor.authorCoronado Hernández, Óscar Enrique
dc.date.accessioned2023-12-29 13:09:03
dc.date.accessioned2025-05-21T19:15:47Z
dc.date.available2023-12-29 13:09:03
dc.date.issued2023-12-29
dc.description.abstractThe calculation of peak discharge in non-instrumented basins requires including morphometric parameters, which in turn depend on the map type used. This study analyses the impact of and variation in peak discharges of the Caño Ricaurte basin, Colombia, based on three types of maps at different resolution scales. The reference map used was the map made for the detailed designs of the channel analysed, which was extracted from the Master Plan of the City. Additionally, maps from a 90 × 90 m digital elevation model and contour lines extracted from Google Earth were used. The time of concentration was determined by different equations (Kirpich, Témez, Bureau, and TR-55) using the mapping methods described above, and the peak discharge was determined using rainfall-runoff models.eng
dc.format.mimetypeapplication/pdfeng
dc.identifier.doi10.32397/tesea.vol4.n2.522
dc.identifier.eissn2745-0120
dc.identifier.urihttps://hdl.handle.net/20.500.12585/13514
dc.identifier.urlhttps://doi.org/10.32397/tesea.vol4.n2.522
dc.language.isoengeng
dc.publisherUniversidad Tecnológica de Bolívareng
dc.relation.bitstreamhttps://revistas.utb.edu.co/tesea/article/download/522/382
dc.relation.citationeditionNúm. 2 , Año 2023 : Transactions on Energy Systems and Engineering Applicationseng
dc.relation.citationendpage17
dc.relation.citationissue2eng
dc.relation.citationstartpage1
dc.relation.citationvolume4eng
dc.relation.ispartofjournalTransactions on Energy Systems and Engineering Applicationseng
dc.relation.referencesFernanda Julia Gaspari, Alfonso Martín Rodríguez Vagaría, Gabriela Elba Senisterra, Gerardo Andrés Denegri, María Isabel Delgado, and Sebastián Ignacio Besteiro. Caracterización morfométrica de la cuenca alta del río sauce grande, buenos aires, argentina. Augm Domus, 4:143–158, 2012. [2] MR Vidal-Abarca, Carlos Montes, ML Suárez, and L Ramirez Diaz. Caracterización morfométrica de la cuenca del río segura: Estudio cuantitativo de las formas de las subcuencas. Papeles de Geografía, (12), 1987. [3] Alejandra M Geraldi, M Piccolo, and Gerardo ME Perillo. Delimitación y estudio de cuencas hidrográficas con modelos hidrológicos. Investigaciones Geográficas (Esp), (52):215–225, 2010. [4] Adán Guillermo Ramírez García, Artemio Cruz León, Pastor Sánchez García, and Alejandro Ismael Monterroso Rivas. La caracterización morfométrica de la subcuenca del río moctezuma, sonora: ejemplo de aplicación de los sistemas de información geográfica. Revista de Geografía Agrícola, (55):27–43, 2015. [5] Rofiat Bunmi Mudashiru, Ismail Abustan, and Fauzi Baharudin. Methods of estimating time of concentration: a case study of urban catchment of sungai kerayong, kuala lumpur. In Proceedings of AICCE’19: Transforming the Nation for a Sustainable Tomorrow 4, pages 119–161. Springer, 2020. [6] Salvatore Grimaldi, Andrea Petroselli, Flavia Tauro, and Maurizio Porfiri. Time of concentration: a paradox in modern hydrology. Hydrological Sciences Journal, 57(2):217–228, 2012. [7] Washington Ramiro Sandoval Erazo and Eduardo Patricio Aguilera Ortiz. Determinación de caudales en cuencas con poco información hidrológica. Ciencia Unemi, 7(12):100–110, 2014. [8] T Bisantino, R Bingner, W Chouaib, F Gentile, and G Trisorio Liuzzi. Estimation of runoff, peak discharge and sediment load at the event scale in a medium-size mediterranean watershed using the annagnps model. Land degradation & development, 26(4):340–355, 2015. [9] Helena M Ramos and Óscar E Coronado-Hernández. Iot, machine learning and photogrammetry in small hydropower towards energy and digital transition: potential energy and viability analyses. Journal of Applied Research in Technology & Engineering, 2023. [10] Ockert J Gericke and Jeff C Smithers. Review of methods used to estimate catchment response time for the purpose of peak discharge estimation. Hydrological sciences journal, 59(11):1935–1971, 2014. [11] Asghar Azizian. Uncertainty analysis of time of concentration equations based on first-order-analysis (foa) method. American Journal of Engineering and Applied Sciences, 11(1):327–341, 2018. [12] Marzieh Mokarram and Majid Hojati. Comparis of digital elevation model (dem) and aerial photographs for drainage. Modeling Earth Systems and Environment, 1:1–6, 2015. [13] Leilei Li, Jintao Yang, and Jin Wu. A method of watershed delineation for flat terrain using sentinel-2a imagery and dem: A case study of the taihu basin. ISPRS International Journal of Geo-Information, 8(12):528, 2019. [14] Zhengqing Lai, Shuo Li, Guonian Lv, Zhirong Pan, and Guosong Fei. Watershed delineation using hydrographic features and a dem in plain river network region. Hydrological Processes, 30(2):276–288, 2016. [15] Marvin E Quesada and Matt Marsik. Uso de modelos de elevación digital como alternativa para mostrar errores en mapas topográficos. Revista Geográfica de América Central, 1(48):77–93, 2012. [16] AB Ariza-Villaverde, FJ Jiménez-Hornero, and E Gutiérrez De Ravé. Influence of dem resolution on drainage network extraction: A multifractal analysis. Geomorphology, 241:243–254, 2015. [17] D. Jiménez. Inundaciones en cartagena: sin soluciones definitivas ni parciales. http://moir.org.co/Inundaciones-en-Cartagena-sin.html [Accessed: June 14, 2016]. [18] Jorge Iván Pérez Alvarino et al. Análisis hidráulico del canal ricaurte como parte del drenaje de aguas lluvias en cartagena de indias mediante la implementación del programa hec-ras 4.1. Título el especialista en recursos hídricos. Universidad de los Andes Departamento de Ingeniería Civil y Ambiental Centro de Investigaciones en Acueductos y Alcantarillados, – CIACUA., 2016. [19] ZP Kirpich. Time of concentration of small agricultural watersheds. Civil engineering, 10(6):362, 1940. [20] Isabel Kaufmann De Almeida, Aleska Kaufmann Almeida, Jamil Alexandre Ayach Anache, Jorge Luiz Steffen, and Teodorico Alves Sobrinho. Estimation on time of concentration of overland flow in watersheds: a review. Geosciences= Geociências, 33(4):661–671, 2014. [21] Roger Cronshey. Urban hydrology for small watersheds. Time of concentration and travel. Number 55. US Department of Agriculture, Soil Conservation Service, Engineering Division, 2nd edition, 1986. pages 29–33. [22] POT (2001). Decreto no 0977 de 2001. http://curaduria2cartagena.com/pdf/POT.pdf [Accessed: March 23, 2021]. [23] Alvaro Gonzalez-Alvarez, Oscar E Coronado-Hernández, Vicente S Fuertes-Miquel, and Helena M Ramos. Effect of the non-stationarity of rainfall events on the design of hydraulic structures for runoff management and its applications to a case study at gordo creek watershed in cartagena de indias, colombia. Fluids, 3(2):27, 2018. [24] Alcaldía Mayor de Cartagena de Indias. Estudios y diseños del plan maestro de drenajes pluviales del distrito de cartagena de indias. https://www.yumpu.com/es/document/view/42121178/plan-maestro-de-drenajes-pluviales-cartagena-parte-1 [Accessed: September 24, 2019]. [25] Departamento Administrativo de Valorización Distrital. Estudios y diseños del plan maestro de drenajes pluviales del distrito de cartagena de indias, 2008.eng
dc.rightsAlexandra Sierra-Sánchez, Oscar E. Coronado-Hernandez, Duban A Paternina-Verona, Gustavo Gatica, Helena M. Ramos - 2023eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesseng
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2eng
dc.rights.creativecommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0eng
dc.sourcehttps://revistas.utb.edu.co/tesea/article/view/522eng
dc.subjectbasineng
dc.subjecttime of concentrationeng
dc.subjectpeak flow rateeng
dc.subjectRicaurteeng
dc.subjectCartagenaeng
dc.subjectMappingeng
dc.titleStatistical Analysis to Quantify the Impact of Map Type on Estimating Peak Discharge in Non-Instrumented Basinsspa
dc.title.translatedStatistical Analysis to Quantify the Impact of Map Type on Estimating Peak Discharge in Non-Instrumented Basinsspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501eng
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85eng
dc.type.contentTexteng
dc.type.driverinfo:eu-repo/semantics/articleeng
dc.type.localJournal articleeng
dc.type.versioninfo:eu-repo/semantics/publishedVersioneng
dspace.entity.typePublication
relation.isAuthorOfPublication482051d5-f72e-4f5c-ab50-931342cd5b83
relation.isAuthorOfPublication.latestForDiscovery482051d5-f72e-4f5c-ab50-931342cd5b83

Archivos