Publicación:
Small-Signal Stability in Low-Voltage DC-Grids

datacite.rightshttp://purl.org/coar/access_right/c_16ec
dc.contributor.authorMontoya Giraldo, Oscar Danilo
dc.contributor.editorCallejas J.D.C.
dc.creatorGarces A.
dc.creatorHerrera J.
dc.creatorGil-González, Walter
dc.date.accessioned2020-03-26T16:33:13Z
dc.date.available2020-03-26T16:33:13Z
dc.date.issued2018
dc.description.abstractThis paper presents a general methodology for small signal stability analysis in low voltage de grids considering four type of terminals, namely: constant power, constant voltage, constant current and constant impedance. This methodology is useful for academic purposes but also in practical applications which includes dc-distribution and dc-microgrids. Simulation results demonstrated the proposed small signal model is accurate compared to dynamical simulations. © 2018 IEEE.eng
dc.description.notesFINANCIAL SUPPORT This work was partially supported by the Master in Electrical Engineering of the Universidad Tecnológica de Pereira.
dc.description.sponsorshipInstitute of Electrical and Electronics Engineers Colombia Section;Institute of Electrical and Electronics Engineers Consejo Andino
dc.format.mediumRecurso electrónico
dc.format.mimetypeapplication/pdf
dc.identifier.citation2018 IEEE ANDESCON, ANDESCON 2018 - Conference Proceedings
dc.identifier.doi10.1109/ANDESCON.2018.8564601
dc.identifier.instnameUniversidad Tecnológica de Bolívar
dc.identifier.isbn9781538683729
dc.identifier.orcid36449223500
dc.identifier.orcid57203479802
dc.identifier.orcid57191493648
dc.identifier.orcid56919564100
dc.identifier.reponameRepositorio UTB
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9206
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers Inc.
dc.relation.conferencedate22 August 2018 through 24 August 2018
dc.rights.accessrightsinfo:eu-repo/semantics/restrictedAccess
dc.rights.ccAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcehttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85060366690&doi=10.1109%2fANDESCON.2018.8564601&partnerID=40&md5=eac88401b045e06c6b4f899987611a4e
dc.sourceScopus2-s2.0-85060366690
dc.source.event9th IEEE ANDESCON, ANDESCON 2018
dc.subject.keywordsDcdistribution small signal stability
dc.subject.keywordsDcmicrogrids
dc.subject.keywordsLVDC grids
dc.subject.keywordsConstant current
dc.subject.keywordsDcmicrogrids
dc.subject.keywordsDynamical simulation
dc.subject.keywordsGeneral methodologies
dc.subject.keywordsLVDC grids
dc.subject.keywordsSmall signal model
dc.subject.keywordsSmall signal stability
dc.subject.keywordsSmall signal stability analysis
dc.titleSmall-Signal Stability in Low-Voltage DC-Grids
dc.typeConferencia
dc.type.driverinfo:eu-repo/semantics/conferenceObject
dc.type.hasversioninfo:eu-repo/semantics/publishedVersion
dcterms.bibliographicCitationLopes, J.A.P., Madureira, A.G., Moreira, C.C.L.M., A view of microgrids (2013) Wiley Interdisciplinary Reviews: Energy and Environment, 2 (1), pp. 86-103. , http://dx.doi.org/10.1002/wene.34
dcterms.bibliographicCitationGuerrero, J.M., Vasquez, J.C., Matas, J., De Vicuna, L.G., Castilla, M., Hierarchical control of droop-controlled ac and dc microgrids: A general approach toward standardization (2011) IEEE Transactions on Industrial Electronics, 58 (1), pp. 158-172. , Jan
dcterms.bibliographicCitationGarces, A., On convergence of newtons method in power flow study for dc microgrids (2018) IEEE Transactions on Power Systems
dcterms.bibliographicCitationDragicevic, T., Lu, X., Vasquez, J., Guerrero, J., Dc microgridspart II: A review of power architectures, applications, and standardization issues (2016) Power Electronics, IEEE Transactions on, 31 (5), pp. 3528-3549. , May
dcterms.bibliographicCitationKwasinski, A., Quantitative Evaluation of Dc Microgrids Availability: Effects of System Architecture and Converter Topology Design Choices.
dcterms.bibliographicCitationAnand, S., Fernandes, B.G., Reduced-order model and stability analysis of low-voltage dc microgrid (2013) IEEE Transactions on Industrial Electronics, 60 (11), pp. 5040-5049. , Nov
dcterms.bibliographicCitationDragicevic, T., Lu, X., Vasquez, J.C., Guerrero, J.M., Dc microgridspart i: A review of control strategies and stabilization technique IEEE Transactions on Power Electronics, (7), pp. 4876-4891. , July
dcterms.bibliographicCitationMagne, P., Nahid-Mobarakeh, B., Pierfederici, S., General active global stabilization of multiloads dc-power networks (2012) IEEE Transactions on Power Electronics, 27 (4), pp. 1788-1798. , April
dcterms.bibliographicCitationKumar, M., Srivastava, S., Singh, S., Control strategies of a dc microgrid for grid connected and islanded operations (2015) Smart Grid, IEEE Transactions on, 6 (4), pp. 1588-1601. , July
dcterms.bibliographicCitationZhao, J., Dorfler, F., Distributed control and optimization in dc microgrids (2015) Automatica, 61, pp. 18-26. , Nov
dcterms.bibliographicCitationMachowsky, J., Bialek, J.W., Rumby, J.R., (2008) Power Systems Dynamics Stability and Control, , Wiley, Ed. Wiley
dcterms.bibliographicCitationPatterson, B., Dc, come home: Dc microgrids and the birth of the enernet (2012) Power and Energy Magazine, IEEE, 10 (6), pp. 60-69. , Nov
dcterms.bibliographicCitationBottrell, N., Prodanovic, M., Green, T.C., Dynamic stability of a microgrid with an active load (2013) IEEE Transactions on Power Electronics, 28 (11), pp. 5107-5119. , Nov
dspace.entity.typePublication
oaire.resourceTypehttp://purl.org/coar/resource_type/c_c94f
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
relation.isAuthorOfPublicationd9da408b-34a8-4c9e-8469-43239d9d590b
relation.isAuthorOfPublication.latestForDiscoveryd9da408b-34a8-4c9e-8469-43239d9d590b

Archivos