Publicación:
Density of the level sets of the metric mean dimension for homeomorphisms

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.audiencePúblico generalspa
dc.contributor.authorRomaña Ibarra, Sergio
dc.contributor.authorArias Cantillo, Raibel
dc.contributor.authorMuentes Acevedo, Jeovanny De Jesús
dc.date.accessioned2024-02-12T15:47:28Z
dc.date.available2024-02-12T15:47:28Z
dc.date.issued2023-12-10
dc.date.submitted2024-02-12
dc.description.abstractLet N be an n-dimensional compact riemannian manifold, with n ≥ 2. In this paper, we prove that for any α ∈ [0, n], the set consisting of homeomorphisms on N with lower and upper metric mean dimensions equal to α is dense in Hom(N). More generally, given α, β ∈ [0, n], with α ≤ β, we show the set consisting of homeomorphisms on N with lower metric mean dimension equal to α and upper metric mean dimension equal to β is dense in Hom(N). Furthermore, we also give a proof that the set of homeomorphisms withupper metric mean dimension equal to n is residual in Hom(N).spa
dc.format.extent14 páginas
dc.format.mimetypeapplication/httpspa
dc.identifier.citationAcevedo, J.M., Romaña, S. & Arias, R. Density of the Level Sets of the Metric Mean Dimension for Homeomorphisms. J Dyn Diff Equat (2024). https://doi.org/10.1007/s10884-023-10344-5spa
dc.identifier.doihttps://doi.org/10.1007/s10884-023-10344-5
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/12632
dc.language.isoengspa
dc.publisher.placeCartagena de Indiasspa
dc.publisher.sedeCampus Tecnológicospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccCC0 1.0 Universal*
dc.rights.urihttp://creativecommons.org/publicdomain/zero/1.0/*
dc.sourceJournal of Dynamics and Differential Equationsspa
dc.subject.armarcLEMB
dc.subject.keywordsMean dimensionspa
dc.subject.keywordsMetric mean dimensionspa
dc.subject.keywordsTopological entropyspa
dc.subject.keywordsGenericityspa
dc.titleDensity of the level sets of the metric mean dimension for homeomorphismsspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dcterms.bibliographicCitationAcevedo, J.M., Romaña, S., Arias, R.: Hölder continuous maps on the interval with positive metric mean dimension. Rev. Colomb. de Math. 57, 57–76 (2024)spa
dcterms.bibliographicCitationAcevedo, J.M.: Genericity of continuous maps with positive metric mean dimension. RM 77(1), 2 (2022)spa
dcterms.bibliographicCitationAcevedo, J.M., Baraviera, A., Becker, A.J., Scopel É.: Metric mean dimension and mean Hausdorff dimension varying the metric. (2024)spa
dcterms.bibliographicCitationArtin M., Mazur B.: On periodic points. Ann. Math. pp. 82-99 (1965)spa
dcterms.bibliographicCitationCarvalho, M., Rodrigues, F.B., Varandas, P.: Generic homeomorphisms have full metric mean dimension. Ergodic Theory Dynam. Syst. 42(1), 40–64 (2022)spa
dcterms.bibliographicCitationGutman, Y., Tsukamoto, M.: Embedding minimal dynamical systems into Hilbert cubes. Invent. Math. 221(1), 113–166 (2020)spa
dcterms.bibliographicCitationHurley, M.: On proofs of the general density theorem. Proceed. Amer. Math. Soci. 124(4), 1305–1309 (1996)spa
dcterms.bibliographicCitationLindenstrauss, E., Weiss, B.: Mean topological dimension. Israel J. Math. 115(1), 1–24 (2000)spa
dcterms.bibliographicCitationLindenstrauss, E., Tsukamoto, M.: Double variational principle for mean dimension. Geom. Funct. Anal. 29(4), 1048–1109 (2019)spa
dcterms.bibliographicCitationLindenstrauss, E., Tsukamoto, M.: From rate distortion theory to metric mean dimension: variational principle. IEEE Trans. Inf. Theory 64(5), 3590–3609 (2018)spa
dcterms.bibliographicCitationLindenstrauss, E., Tsukamoto, M.: Mean dimension and an embedding problem: an example. Israel J. Math. 199(2), 573–584 (2014)spa
dcterms.bibliographicCitationShinoda, M., Tsukamoto, M.: Symbolic dynamics in mean dimension theory. Ergodic Theory Dynam. Syst. 41(8), 2542–2560 (2021)spa
dcterms.bibliographicCitationTsukamoto, M.: Mean dimension of full shifts. Israel J. Math. 230, 183–193 (2019)spa
dcterms.bibliographicCitationVelozo A., Velozo R.: Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv preprint arXiv:1707.05762 (2017)spa
dcterms.bibliographicCitationYano, K.: A remark on the topological entropy of homeomorphisms. Invent. Math. 59(3), 215–220 (1980)spa
dspace.entity.typePublication
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
relation.isAuthorOfPublication0aab56f2-0cbd-4150-8974-a2cc9996e481
relation.isAuthorOfPublication.latestForDiscovery0aab56f2-0cbd-4150-8974-a2cc9996e481

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
s10884-023-10344-5.pdf
Tamaño:
535 KB
Formato:
Adobe Portable Document Format
Descripción:
Artículo principal

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.11 KB
Formato:
Item-specific license agreed upon to submission
Descripción: