Publicación: Derivative-aligned anticipation of forbush decreases from entropy and fractal markers
| dc.contributor.author | Perez Navarro, Juan Diego | |
| dc.contributor.author | Sierra Porta, David | |
| dc.date.accessioned | 2026-02-17T13:20:48Z | |
| dc.date.issued | 2026-01-14 | |
| dc.description | Contiene gráficos | |
| dc.description.abstract | We develop a feature-based framework to anticipate Forbush decreases (FDs) in one-minute neutronmonitor records by tracking sliding-window invariants from information theory, scaling, and geometry. For each station we compute marker time series—including Shannon, spectral, approximate and sample entropy; Lempel–Ziv complexity; correlation dimension; and Higuchi and Katz fractal dimensions—smooth them with an exponentially weighted moving average, and analyze their within-station standardized first differences. Timing is referenced to an operational alignment time t0 defined as the minimum of the smoothed count first difference, and marker leads are reported in minutes (ℓ ∗ < 0 indicates anticipation). Station-level detectability is defined on a pre-t0 window using a robust z-score detector with bilateral threshold and persistence, requiring neither cross-correlation nor hypothesis testing. We apply the pipeline to two FD episodes with broad station coverage (2023-04-23 and 2024-05-10; 28 stations each). Across events, a compact CORE panel exhibits consistently high detection rates and predominantly negative lead distributions, with median leads of order several hours depending on the invariant and event. Lead dispersion across stations is substantial (interquartile ranges typically spanning a few hours), underscoring the value of station-wise criteria and distributional summaries rather than single-station inference. Representative marker trajectories confirm that early flagging corresponds to sustained pre-t0 excursions in marker differences, not merely tabulated artifacts. The approach is reproducible from open code, operates on native station units without cross-station homogenization, and is qualitatively stable to sensitivity sweeps of windowing, smoothing, and detector parameters. These results support derivative-aligned invariant panels as practical early-warning complements to amplitude-threshold methods in space-weather nowcasting. Subject headings: Forbush decrease, space weather, neutron monitor, sliding-window invariants, entropy measures, fractal dimension | |
| dc.format.extent | 11 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Perez-Navarro, J. D., & Sierra-Porta, D. (2026). Derivative-Aligned Anticipation of Forbush Decreases from Entropy and Fractal Markers. Instrumentation and Methods for Astrophysics. https://doi.org/10.48550/arXiv.2511.01506 | |
| dc.identifier.doi | 10.48550/arXiv.2511.01506 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/14327 | |
| dc.publisher | Instrumentation and Methods for Astrophysics | |
| dc.relation.references | J. A. Lockwood, Space Science Reviews 12, 658 (1971) | |
| dc.relation.references | G. Balasis, M. A. Balikhin, S. C. Chapman, G. Consolini, I. A. Daglis, R. V. Donner, J. Kurths, M. Paluˇs, J. Runge, B. T. Tsurutani, et al., Space Science Reviews 219, 38 (2023) | |
| dc.relation.references | D. Sierra-Porta, Astrophysics and Space Science 367, 116 (2022). | |
| dc.relation.references | D. Sierra-Porta and A.-R. Dom´ınguez-Monterroza, Physica A: Statistical Mechanics and its Applications 607, 128159 (2022). | |
| dc.relation.references | D. Sierra-Porta, Chaos, Solitons & Fractals 185, 115089 (2024). | |
| dc.relation.references | B. D. Fulcher, M. A. Little, and N. S. Jones, Journal of the Royal Society Interface 10, 20130048 (2013) | |
| dc.relation.references | C. H. Lubba, S. S. Sethi, P. Knaute, S. R. Schultz, B. D. Fulcher, and N. S. Jones, Data mining and knowledge discovery 33, 1821 (2019) | |
| dc.relation.references | J. M. Amig´o and P. Tempesta, “Information geometry, complexity measures and data analysis,” (2022). | |
| dc.relation.references | B. D. Fulcher and N. S. Jones, IEEE Transactions on Knowledge and Data Engineering 26, 3026 (2014) | |
| dc.relation.references | V. A. Unakafova and K. Keller, Entropy 15, 4392 (2013). | |
| dc.relation.references | S. Raubitzek and T. Neubauer, Entropy 23, 1672 (2021). | |
| dc.relation.references | J. D. Farmer, Zeitschrift Naturforschung Teil A 37, 1304 (1982) | |
| dc.relation.references | J. Zhou, J. Xiao, H. Xiao, W. Zhang, W. Zhu, and C. Li, Advances in Mechanical Engineering 6, 803919 (2014). | |
| dc.relation.references | I. Stolz and K. Keller, Entropy 19, 675 (2017). | |
| dc.relation.references | K. Keller and M. Sinn, Nonlinearity 22, 2417 (2009). | |
| dc.relation.references | M. Tao, K. Poskuviene, N. F. Alkayem, M. Cao, and M. Ragulskis, Entropy 20, 612 (2018) | |
| dc.relation.references | T. Strydom, G. V. Dalla Riva, and T. Poisot, Frontiers in Ecology and Evolution 9, 623141 (2021) | |
| dc.relation.references | H. V. Ribeiro, M. Jauregui, L. Zunino, and E. K. Lenzi, Physical review E 95, 062106 (2017). | |
| dc.relation.references | H. Krakovsk´a and A. Krakovsk´a, arXiv e-prints , arXiv:1611.06190 (2016), arXiv:1611.06190 [math.DS]. | |
| dc.relation.references | S. Hasegawa, H. Anada, and S. Kanagawa, arXiv e-prints , arXiv:1310.3564 (2013), arXiv:1310.3564 [cs.NA]. | |
| dc.relation.references | D. Sierra-Porta, M. Tarazona-Alvarado, and D. H. Acevedo, Astronomy and Computing 48, 100857 (2024). | |
| dc.relation.references | D. Sierra-Porta, Journal of Atmospheric and Solar-Terrestrial Physics 266, 106407 (2025). | |
| dc.relation.references | G. Manis, M. Bodini, M. W. Rivolta, and R. Sassi, Entropy 23, 761 (2021). | |
| dc.relation.references | R. K. Panda, R. Verdel, A. Rodriguez, H. Sun, G. Bianconi, and M. Dalmonte, SciPost Physics Core 6, 086 (2023), arXiv:2308.13636 [cond-mat.stat-mech]. | |
| dc.relation.references | G. Graff, B. Graff, A. Kaczkowska, D. Makowiec, J. Amig´o, J. Piskorski, K. Narkiewicz, and P. Guzik, The European Physical Journal Special Topics 222, 525 (2013). | |
| dc.relation.references | A. Gil, V. Glavan, A. Wawrzaszek, R. Modzelewska, and L. Tomasik, Entropy 23, 1531 (2021). | |
| dc.relation.references | S. Raubitzek and T. Neubauer, Entropy 23, 1672 (2021). | |
| dc.relation.references | Y. Sinai, Scholarpedia 4, 2034 (2009). | |
| dc.relation.references | M. A. Abunina, N. S. Shlyk, A. V. Belov, S. M. Belov, and A. A. Abunin, arXiv e-prints , arXiv:2501.08029 (2025), arXiv:2501.08029 [astro-ph.SR]. | |
| dc.relation.references | A. Papaioannou, A. Mishev, I. Usoskin, B. Heber, R. Vainio, N. Larsen, M. Jarry, A. P. Rouillard, N. Talebpour Sheshvan, M. Laurenza, M. Dumbovi´c, G. Vasalos, J. Gieseler, S. Koldobskiy, O. Raukunen, C. Palmroos, M. H¨orl¨ock, M. K¨oberle, R. F. Wimmer-Schweingruber, A. Anastasiadis, P. K¨uhl, and E. Lavasa, Sol. Phys. 300, 73 (2025), arXiv:2505.09180 [astro-ph.SR]. | |
| dc.relation.references | V. Koikkalainen, E. Kilpua, S. Good, and A. Osmane, Nonlinear Processes in Geophysics 32, 309 (2025). | |
| dc.relation.references | J. L. Raath, C. P. Olivier, and N. E. Engelbrecht, Journal of Geophysical Research (Space Physics) 127, e30200 (2022). | |
| dc.relation.references | F. Riggi, L. Hertle, M. Abbrescia, C. Avanzini, L. Baldini, R. Baldini Ferroli, G. Batignani, M. Battaglieri, S. Boi, J. Boike, E. Bossini, F. Carnesecchi, D. Cavazza, C. Cical`o, L. Cifarelli, F. Coccetti, E. Coccia, A. Corvaglia, D. De Gruttola, S. De Pasquale, P. Dietrich, L. Galante, M. Garbini, E. Gericke, I. Gnesi, F. Gramegna, E. Gramstad, S. Grazzi, E. S. Haland, D. Hatzifotiadou, P. La Rocca, N. Krebs, S. Landmark, Z. Liu, G. Mandaglio, A. Margotti, G. Maron, M. Maturilli, M. N. Mazziotta, A. Mulliri, R. Nania, F. Noferini, F. Nozzoli, F. Ould-Saada, F. Palmonari, M. Panareo, M. P. Panetta, R. Paoletti, C. Pellegrino, L. Perasso, C. Pinto, S. Pisano, G. Righini, C. Ripoli, M. Rizzi, G. Sartorelli, E. Scapparone, P. Schattan, M. Schioppa, M. Schr¨on, G. Scioli, A. Scribano, M. Selvi, M. Taiuti, G. Terreni, A. Trifir`o, M. Trimarchi, C. Vistoli, L. Votano, M. C. S. Williams, S. Zacharias, A. Zichichi, R. Zuyeuski, and O. Pinazza, Advances in Space Research 76, 1225 (2025). | |
| dc.relation.references | D. Borin, Phys. Rev. E 110, 064227 (2024). | |
| dc.relation.references | M. Mangalam, T. Wilson, J. Sommerfeld, and A. D. Likens, arXiv e-prints , arXiv:2301.12064 (2023), arXiv:2301.12064 [q-bio.QM]. | |
| dc.relation.references | Y. Li, Y. Zhou, and S. Jiao, Fractal and Fractional 8, 9 (2023) | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.ddc | 520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos | |
| dc.subject.lemb | Clima espacial | |
| dc.subject.lemb | Series de tiempo | |
| dc.subject.lemb | Entropía | |
| dc.subject.lemb | Dimensión de correlación | |
| dc.subject.lemb | Métodos computacionales y estadísticos | |
| dc.subject.lemb | Heliofísica | |
| dc.subject.lemb | Space weather | |
| dc.subject.lemb | Time series | |
| dc.subject.lemb | Entropy | |
| dc.subject.lemb | Correlation dimension | |
| dc.subject.lemb | Computational and statistical methods | |
| dc.subject.lemb | Heliophysics | |
| dc.subject.ocde | 1. Ciencias Naturales::1C. Ciencias físicas::1C08. Astronomía | |
| dc.subject.ods | ODS 17: Alianzas para lograr los objetivos. Fortalecer los medios de implementación y revitalizar la Alianza Mundial para el Desarrollo Sostenible | |
| dc.subject.proposal | Forbush decrease | |
| dc.subject.proposal | Space weather | |
| dc.subject.proposal | Neutron monitor | |
| dc.subject.proposal | Sliding-window invariants | |
| dc.subject.proposal | Entropy measures | |
| dc.subject.proposal | Fractal dimension | |
| dc.title | Derivative-aligned anticipation of forbush decreases from entropy and fractal markers | |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_18cf | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | e144acbd-d319-4f6e-8569-0e7e0a800d6e | |
| relation.isAuthorOfPublication | 996a607a-3eb1-4484-8978-ed736b9fc0b7 | |
| relation.isAuthorOfPublication.latestForDiscovery | e144acbd-d319-4f6e-8569-0e7e0a800d6e |