Publicación:
Derivative-aligned anticipation of forbush decreases from entropy and fractal markers

dc.contributor.authorPerez Navarro, Juan Diego
dc.contributor.authorSierra Porta, David
dc.date.accessioned2026-02-17T13:20:48Z
dc.date.issued2026-01-14
dc.descriptionContiene gráficos
dc.description.abstractWe develop a feature-based framework to anticipate Forbush decreases (FDs) in one-minute neutronmonitor records by tracking sliding-window invariants from information theory, scaling, and geometry. For each station we compute marker time series—including Shannon, spectral, approximate and sample entropy; Lempel–Ziv complexity; correlation dimension; and Higuchi and Katz fractal dimensions—smooth them with an exponentially weighted moving average, and analyze their within-station standardized first differences. Timing is referenced to an operational alignment time t0 defined as the minimum of the smoothed count first difference, and marker leads are reported in minutes (ℓ ∗ < 0 indicates anticipation). Station-level detectability is defined on a pre-t0 window using a robust z-score detector with bilateral threshold and persistence, requiring neither cross-correlation nor hypothesis testing. We apply the pipeline to two FD episodes with broad station coverage (2023-04-23 and 2024-05-10; 28 stations each). Across events, a compact CORE panel exhibits consistently high detection rates and predominantly negative lead distributions, with median leads of order several hours depending on the invariant and event. Lead dispersion across stations is substantial (interquartile ranges typically spanning a few hours), underscoring the value of station-wise criteria and distributional summaries rather than single-station inference. Representative marker trajectories confirm that early flagging corresponds to sustained pre-t0 excursions in marker differences, not merely tabulated artifacts. The approach is reproducible from open code, operates on native station units without cross-station homogenization, and is qualitatively stable to sensitivity sweeps of windowing, smoothing, and detector parameters. These results support derivative-aligned invariant panels as practical early-warning complements to amplitude-threshold methods in space-weather nowcasting. Subject headings: Forbush decrease, space weather, neutron monitor, sliding-window invariants, entropy measures, fractal dimension
dc.format.extent11 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.citationPerez-Navarro, J. D., & Sierra-Porta, D. (2026). Derivative-Aligned Anticipation of Forbush Decreases from Entropy and Fractal Markers. Instrumentation and Methods for Astrophysics. https://doi.org/10.48550/arXiv.2511.01506
dc.identifier.doi10.48550/arXiv.2511.01506
dc.identifier.urihttps://hdl.handle.net/20.500.12585/14327
dc.publisherInstrumentation and Methods for Astrophysics
dc.relation.referencesJ. A. Lockwood, Space Science Reviews 12, 658 (1971)
dc.relation.referencesG. Balasis, M. A. Balikhin, S. C. Chapman, G. Consolini, I. A. Daglis, R. V. Donner, J. Kurths, M. Paluˇs, J. Runge, B. T. Tsurutani, et al., Space Science Reviews 219, 38 (2023)
dc.relation.referencesD. Sierra-Porta, Astrophysics and Space Science 367, 116 (2022).
dc.relation.referencesD. Sierra-Porta and A.-R. Dom´ınguez-Monterroza, Physica A: Statistical Mechanics and its Applications 607, 128159 (2022).
dc.relation.referencesD. Sierra-Porta, Chaos, Solitons & Fractals 185, 115089 (2024).
dc.relation.referencesB. D. Fulcher, M. A. Little, and N. S. Jones, Journal of the Royal Society Interface 10, 20130048 (2013)
dc.relation.referencesC. H. Lubba, S. S. Sethi, P. Knaute, S. R. Schultz, B. D. Fulcher, and N. S. Jones, Data mining and knowledge discovery 33, 1821 (2019)
dc.relation.referencesJ. M. Amig´o and P. Tempesta, “Information geometry, complexity measures and data analysis,” (2022).
dc.relation.referencesB. D. Fulcher and N. S. Jones, IEEE Transactions on Knowledge and Data Engineering 26, 3026 (2014)
dc.relation.referencesV. A. Unakafova and K. Keller, Entropy 15, 4392 (2013).
dc.relation.referencesS. Raubitzek and T. Neubauer, Entropy 23, 1672 (2021).
dc.relation.referencesJ. D. Farmer, Zeitschrift Naturforschung Teil A 37, 1304 (1982)
dc.relation.referencesJ. Zhou, J. Xiao, H. Xiao, W. Zhang, W. Zhu, and C. Li, Advances in Mechanical Engineering 6, 803919 (2014).
dc.relation.referencesI. Stolz and K. Keller, Entropy 19, 675 (2017).
dc.relation.referencesK. Keller and M. Sinn, Nonlinearity 22, 2417 (2009).
dc.relation.referencesM. Tao, K. Poskuviene, N. F. Alkayem, M. Cao, and M. Ragulskis, Entropy 20, 612 (2018)
dc.relation.referencesT. Strydom, G. V. Dalla Riva, and T. Poisot, Frontiers in Ecology and Evolution 9, 623141 (2021)
dc.relation.referencesH. V. Ribeiro, M. Jauregui, L. Zunino, and E. K. Lenzi, Physical review E 95, 062106 (2017).
dc.relation.referencesH. Krakovsk´a and A. Krakovsk´a, arXiv e-prints , arXiv:1611.06190 (2016), arXiv:1611.06190 [math.DS].
dc.relation.referencesS. Hasegawa, H. Anada, and S. Kanagawa, arXiv e-prints , arXiv:1310.3564 (2013), arXiv:1310.3564 [cs.NA].
dc.relation.referencesD. Sierra-Porta, M. Tarazona-Alvarado, and D. H. Acevedo, Astronomy and Computing 48, 100857 (2024).
dc.relation.referencesD. Sierra-Porta, Journal of Atmospheric and Solar-Terrestrial Physics 266, 106407 (2025).
dc.relation.referencesG. Manis, M. Bodini, M. W. Rivolta, and R. Sassi, Entropy 23, 761 (2021).
dc.relation.referencesR. K. Panda, R. Verdel, A. Rodriguez, H. Sun, G. Bianconi, and M. Dalmonte, SciPost Physics Core 6, 086 (2023), arXiv:2308.13636 [cond-mat.stat-mech].
dc.relation.referencesG. Graff, B. Graff, A. Kaczkowska, D. Makowiec, J. Amig´o, J. Piskorski, K. Narkiewicz, and P. Guzik, The European Physical Journal Special Topics 222, 525 (2013).
dc.relation.referencesA. Gil, V. Glavan, A. Wawrzaszek, R. Modzelewska, and L. Tomasik, Entropy 23, 1531 (2021).
dc.relation.referencesS. Raubitzek and T. Neubauer, Entropy 23, 1672 (2021).
dc.relation.referencesY. Sinai, Scholarpedia 4, 2034 (2009).
dc.relation.referencesM. A. Abunina, N. S. Shlyk, A. V. Belov, S. M. Belov, and A. A. Abunin, arXiv e-prints , arXiv:2501.08029 (2025), arXiv:2501.08029 [astro-ph.SR].
dc.relation.referencesA. Papaioannou, A. Mishev, I. Usoskin, B. Heber, R. Vainio, N. Larsen, M. Jarry, A. P. Rouillard, N. Talebpour Sheshvan, M. Laurenza, M. Dumbovi´c, G. Vasalos, J. Gieseler, S. Koldobskiy, O. Raukunen, C. Palmroos, M. H¨orl¨ock, M. K¨oberle, R. F. Wimmer-Schweingruber, A. Anastasiadis, P. K¨uhl, and E. Lavasa, Sol. Phys. 300, 73 (2025), arXiv:2505.09180 [astro-ph.SR].
dc.relation.referencesV. Koikkalainen, E. Kilpua, S. Good, and A. Osmane, Nonlinear Processes in Geophysics 32, 309 (2025).
dc.relation.referencesJ. L. Raath, C. P. Olivier, and N. E. Engelbrecht, Journal of Geophysical Research (Space Physics) 127, e30200 (2022).
dc.relation.referencesF. Riggi, L. Hertle, M. Abbrescia, C. Avanzini, L. Baldini, R. Baldini Ferroli, G. Batignani, M. Battaglieri, S. Boi, J. Boike, E. Bossini, F. Carnesecchi, D. Cavazza, C. Cical`o, L. Cifarelli, F. Coccetti, E. Coccia, A. Corvaglia, D. De Gruttola, S. De Pasquale, P. Dietrich, L. Galante, M. Garbini, E. Gericke, I. Gnesi, F. Gramegna, E. Gramstad, S. Grazzi, E. S. Haland, D. Hatzifotiadou, P. La Rocca, N. Krebs, S. Landmark, Z. Liu, G. Mandaglio, A. Margotti, G. Maron, M. Maturilli, M. N. Mazziotta, A. Mulliri, R. Nania, F. Noferini, F. Nozzoli, F. Ould-Saada, F. Palmonari, M. Panareo, M. P. Panetta, R. Paoletti, C. Pellegrino, L. Perasso, C. Pinto, S. Pisano, G. Righini, C. Ripoli, M. Rizzi, G. Sartorelli, E. Scapparone, P. Schattan, M. Schioppa, M. Schr¨on, G. Scioli, A. Scribano, M. Selvi, M. Taiuti, G. Terreni, A. Trifir`o, M. Trimarchi, C. Vistoli, L. Votano, M. C. S. Williams, S. Zacharias, A. Zichichi, R. Zuyeuski, and O. Pinazza, Advances in Space Research 76, 1225 (2025).
dc.relation.referencesD. Borin, Phys. Rev. E 110, 064227 (2024).
dc.relation.referencesM. Mangalam, T. Wilson, J. Sommerfeld, and A. D. Likens, arXiv e-prints , arXiv:2301.12064 (2023), arXiv:2301.12064 [q-bio.QM].
dc.relation.referencesY. Li, Y. Zhou, and S. Jiao, Fractal and Fractional 8, 9 (2023)
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos
dc.subject.lembClima espacial
dc.subject.lembSeries de tiempo
dc.subject.lembEntropía
dc.subject.lembDimensión de correlación
dc.subject.lembMétodos computacionales y estadísticos
dc.subject.lembHeliofísica
dc.subject.lembSpace weather
dc.subject.lembTime series
dc.subject.lembEntropy
dc.subject.lembCorrelation dimension
dc.subject.lembComputational and statistical methods
dc.subject.lembHeliophysics
dc.subject.ocde1. Ciencias Naturales::1C. Ciencias físicas::1C08. Astronomía
dc.subject.odsODS 17: Alianzas para lograr los objetivos. Fortalecer los medios de implementación y revitalizar la Alianza Mundial para el Desarrollo Sostenible
dc.subject.proposalForbush decrease
dc.subject.proposalSpace weather
dc.subject.proposalNeutron monitor
dc.subject.proposalSliding-window invariants
dc.subject.proposalEntropy measures
dc.subject.proposalFractal dimension
dc.titleDerivative-aligned anticipation of forbush decreases from entropy and fractal markers
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_18cf
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicatione144acbd-d319-4f6e-8569-0e7e0a800d6e
relation.isAuthorOfPublication996a607a-3eb1-4484-8978-ed736b9fc0b7
relation.isAuthorOfPublication.latestForDiscoverye144acbd-d319-4f6e-8569-0e7e0a800d6e

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2511.01506v2.pdf
Tamaño:
6.47 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: