Publicación:
Economic Optimization of Local Energy Markets: Strategies for Prosumers with IoT and Blockchain Integration

dc.contributor.authorMedina Reyes, María Fernanda
dc.contributor.authorPuertas Del Castillo, Edwin Alexander
dc.contributor.authorMartínez Santos, Juan Carlos
dc.date.accessioned2025-08-22T21:03:02Z
dc.date.issued2025-08-19
dc.descriptionContiene ilustraciones
dc.description.abstractThis study explores strategies for optimizing local energy markets through analyzing representative prosumers data. Energy communities, which consist of local consumers and generators, offer a unique opportunity to maximize revenues and reduce costs in energy trading. We based the methodological approach on a dataset comprising energy production, consumption, and price data from 20 prosumers with distributed generation and energy storage capabilities. Two key strategies were analyzed: maximizing earnings from the sale of surplus energy by prioritizing transactions during periods of higher prices and minimizing purchasing costs by shifting consumption to periods of lower prices. The results demonstrate an average cost reduction of 18.62% and a considerable increase in revenues for prosumers, substantiating these strategies’ beneficial economic impact. The analysis integrates data collected by sensors connected through the Internet of Things, which allows for evaluating prosumers’ behavior and simulating scenarios designed to optimize their participation in the energy market. Furthermore, implementing smart contracts is key to facilitating transactions, guaranteeing transparency, and enhancing resource administration. This methodology, which is applicable in regions with considerable renewable potential, establishes the foundation for a transition to decentralized energy systems, thereby promoting economic advancement and environmental sustainability.eng
dc.format.extent1 página
dc.format.mimetypeapplication/pdf
dc.identifier.citationMedina-Reyes, M. F., Puertas, E., & Martinez-Santos, J. C. (2025). Economic optimization of local energy markets: Strategies for prosumers with IoT and blockchain integration. 2025 IEEE Latin Conference on IoT (LCIoT), 40–43. https://doi.org/10.1109/LCIoT64881.2025.11118552
dc.identifier.doihttps://doi.org/10.1109/LCIoT64881.2025.11118552
dc.identifier.isbn979-8-3315-1119-7
dc.identifier.urihttps://hdl.handle.net/20.500.12585/14178
dc.language.isoeng
dc.relation.referencesIbrahim Dincer and Canan Acar. A review on clean energy solutions for better sustainability. Apr. 2015. DOI: 10.1002/er.3329.
dc.relation.referencesMerlinda Andoni et al Blockchain technology in the energy sector: A systematic review of challenges and opportunities. Feb. 2019. DOI: 10.1016/j.rser.2018.10.014.
dc.relation.referencesThomas Morstyn, Alexander Teytelboym, and Malcolm D. McCulloch. “Bilateral contract networks for peer-to-peer energy trading ”. In: IEEE Transactions on Smart Grid 10. 2 ( Mar. 2019 ), pp. 2026–2035. ISSN: 19493053. DOI: 10.1109/TSG.2017.2786668.
dc.relation.referencesH. Ariza et al. “A blockchain solution for operational parameters monitoring platform for DC microgrids ”. In: 2020 IEEE ANDESCON, ANDESCON 2020. Institute of Electrical and Electronics Engineers Inc., Oct. 2020. ISBN: 9781728193656. DOI: 10.1109/ANDESCON50619.2020.9272035.
dc.relation.referencesYing Wu et al. “Digitalization and decentralization driving transactive energy Internet: Key technologies and infrastructures ”. In: International Journal of Electrical Power & Energy Systems 126 ( 2021 ), p. 106593. ISSN: 0142-0615. DOI: https://doi.org/10.1016/j.ijepes.2020.106593. URL: https://www.sciencedirect.com/science/article/pii/S0142061520328210.
dc.relation.referencesTarek AlSkaif et al. “Blockchain-Based Fully Peer-to-Peer Energy Trading Strategies for Residential Energy Systems ”. In: IEEE Transactions on Industrial Informatics 18. 1 ( 2022 ), pp. 231–241. DOI: 10.1109/TII.2021.3077008.
dc.relation.referencesJia Liu et al. “Uncertainty energy planning of net-zero energy communities with peer-to-peer energy trading and green vehicle storage considering climate changes by 2050 with machine learning methods ”. In: Applied Energy 321 ( Sept. 2022 ). ISSN: 03062619. DOI: 10.1016/j.apenergy.2022.119394.
dc.relation.referencesCátia Silva et al. “Demand Response Contextual Remuneration of Prosumers with Distributed Storage ”. In: Sensors 22. 22 ( 2022 ). DOI: 10.3390/s22228877. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85142705458&doi=10.3390%2fs22228877&partnerID=40&md5=f3a854bbe98d57d42b1cd568d979bfe6.
dc.relation.referencesLi Tong, Jinhui Zhou, and Junyi Li. “IoT-Based Low-Voltage Power Distribution System Management and Control Platform ”. In: Frontiers in Energy Research 10 ( 2022 ). DOI: 10.3389/fenrg.2022.902715. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85133509417&doi=10.3389%2ffenrg.2022.902715partnerID=40md5=9cadc625bdf517c72c83d3400fb79666.
dc.relation.referencesMágui Lage et al. “Techno-economic analysis of self-consumption schemes and energy communities in Italy and Portugal ”. In: Solar Energy 270 ( Mar. 2024 ). ISSN: 0038092X. DOI: 10.1016/j.solener.2024.112407.
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.proposalEnergy communities
dc.subject.proposalP2P energy trading
dc.subject.proposalSmart contracts
dc.subject.proposalIoT sensors
dc.titleEconomic Optimization of Local Energy Markets: Strategies for Prosumers with IoT and Blockchain Integrationeng
dc.typeDocumento de Conferencia
dc.type.coarhttp://purl.org/coar/resource_type/c_18cf
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationc0edc215-33d5-4577-a51c-f1b609158534
relation.isAuthorOfPublication84e86005-e232-4d13-ab38-68f0f2b4aeb0
relation.isAuthorOfPublication35de2f55-a620-47ac-97f2-9961adeac601
relation.isAuthorOfPublication.latestForDiscoveryc0edc215-33d5-4577-a51c-f1b609158534

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Economic Optimization of Local Energy Markets abstract.pdf
Tamaño:
96.36 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: