Publicación: Biological approaches to mitigate heavy metal pollution from battery production effluents: advances, challenges, and perspectives
dc.contributor.author | MONROY-LICHT, ANDREA | |
dc.contributor.author | Martinez‑Burgos, Walter Jose | |
dc.contributor.author | De Carvalho, Júlio Cesar | |
dc.contributor.author | Cavali, Matheus | |
dc.contributor.author | Lorenci Woiciechowski, Adenise | |
dc.contributor.author | Grace Karp, Susan, | |
dc.contributor.author | Ricardo Soccol, Carlos | |
dc.contributor.author | Ana C. De la Parra‑Guerra | |
dc.contributor.author | De la parra, Ana Cristina | |
dc.contributor.author | Pozzan, Roberta | |
dc.contributor.author | Acevedo Barrios, Rosa Leonor | |
dc.contributor.researchgroup | Grupo de Investigación Estudios Químicos y Biológicos | |
dc.contributor.seedbeds | Semillero de Investigación en Ciencias Ambientales | |
dc.date.accessioned | 2025-09-02T19:52:36Z | |
dc.date.available | 2025-09-02 | |
dc.date.issued | 2025-07-18 | |
dc.description | Contiene ilustraciones, gráficos | |
dc.description.abstract | Battery production generates effluents containing various pollutants, predominantly heavy metals such as lead (Pb), cadmium (Cd), nickel (Ni), copper (Cu), zinc (Zn), and chromium (Cr), which represent a serious risk to human health and the environment. Given their persistence, toxicity, and mobility in ecosystems and biota, heavy metals can bioaccumulate and, in some cases, enter the food chain. With this context in mind, this review presents emerging ioremediation technologies to treat effluents from battery production, focusing on biological methods such as biosorption, phytoremediation, and the use of microorganisms. Heavy metal removal mechanisms and conventional treatments are reviewed, with emphasis on biological approaches. Biosorption emerges as the most used strategy (54.4%) across organisms from different kingdoms. In addition, existing knowledge gaps in battery industry effluent management research are identified, proposing future directions that include the integration of sustainable technologies and the use of traditional knowledge of local communities. This approach seeks not only to mitigate the environmental impact of battery production but also to promote more responsible and equitable production practices, aligned with the principles of environmental justice and sustainability. | |
dc.description.researcharea | Microbiología y toxicología ambiental | |
dc.description.tableofcontents | Titulo Abstract Introduction Methodology Contenido Conclusion References | |
dc.description.technicalinfo | No Aplica | |
dc.format.extent | 35 | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Monroy-Licht, A., Martinez-Burgos, W.J., de Carvalho, J.C. et al. Biological approaches to mitigate heavy metal pollution from battery production effluents: advances, challenges, and perspectives. Environ Sci Pollut Res (2025). https://doi.org/10.1007/s11356-025-36792-8 | |
dc.identifier.other | https://doi.org/10.1007/s11356-025-36792-8 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/14185 | |
dc.language.iso | eng | |
dc.relation.references | Abbas MN, Al-Tameemi IM, Hasan MB, Al-Madhhachi A-ST (2021) Chemical removal of cobalt and lithium in contaminated soils using promoted white eggshells with different catalysts. South Afr J Chem Eng 35:23–32. https:// doi. org/ 10. 1016/j. sajce. 2020. 11. 002 | |
dc.relation.references | Abbas S, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals. J Chem Sci Technol 3:74–102 | |
dc.relation.references | Abdel Maksoud MIA, Elgarahy AM, Farrell C, Al-Muhtaseb AH, Rooney DW, Osman AI (2020) Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord Chem Rev 403:213096. https:// doi. org/ 10. 1016/j. ccr. 2019. 213096 | |
dc.relation.references | Abinandan S, Subashchandrabose SR, Pannerselvan L, Venkateswarlu K, Megharaj M (2019) Potential of acid-tolerant microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, in heavy metal removal and biodiesel production at acidic pH. Biores Technol 278(January):9–16. https:// doi. org/ 10. 1016/j. biort ech. 2019. 01. 053 | |
dc.relation.references | Abo-Alkasem MI, Hassan NH, Abo Elsoud MM (2023) Microbial bioremediation as a tool for the removal of heavy metals. Bull Natl Res Cent 47(1):31. https:// doi. org/ 10. 1186/ s42269- 023- 01006-z | |
dc.relation.references | Ahemad M (2019) Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab J Chem 12(7):1365–1377. https:// doi. org/ 10. 1016/j. arabjc. 2014. 11. 020 | |
dc.relation.references | Ahmad N, Mounsef JR, Tayeh JA, Lteif R (2020) Bioremediation of Ni, Al and Pb by the living cells of a resistant strain of microalga. Water Sci Technol 82(5):851–860. https:// doi. org/ 10. 2166/ wst. 2020. 381 | |
dc.relation.references | Ahmad Sk. A, Khan MH, Khandker S, Sarwar AFM, Yasmin N, Faruquee MH, Yasmin R (2014) Blood lead levels and health problems of lead acid battery workers in Bangladesh. Sci World J 2014(1):974104. https:// doi. org/ 10. 1155/ 2014/ 974104 | |
dc.relation.references | Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals— concepts and applications. Chemosphere 91(7):869–881. https:// doi. org/ 10. 1016/j. chemo sphere. 2013. 01. 075 | |
dc.relation.references | Ali S, Shah IA, Ahmad A, Nawab J, Huang H (2019) Ar/O2 plasma treatment of carbon nanotube membranes for enhanced removal of zinc from water and wastewater: a dynamic sorption-filtration process. Sci Total Environ 655:1270–1278. https:// doi. org/ 10. 1016/j. scito tenv. 2018. 11. 335 | |
dc.relation.references | Al-Jabri H, Das P, Khan S, Thaher M, Abdulquadir M (2021) Treatment of wastewaters by microalgae and the potential applications of the produced biomass—a review. Water (Switzerland) 13(1). https:// doi. org/ 10. 3390/ w1301 0027 | |
dc.relation.references | Alotaibi AS, Alhumairi AM, Ghabban H, Alenzi AM, Hamouda RA (2024) Simultaneous production of biofuel, and removal of heavy metals using marine alga Turbinaria turbinata as a feedstock in NEOM Region, Tabuk. Ecotoxicol Environ Saf 275:116224. https:// doi. org/ 10. 1016/j. ecoenv. 2024. 116224 | |
dc.relation.references | Amal Raj AR, Mylsamy P, Sivasankar V, Kumar BS, Omine K, Sunitha TG (2024) Heavy metal pollution of river water and ecofriendly remediation using potent microalgal species. Water Sci Eng 17(1):41–50. https:// doi. org/ 10. 1016/j. wse. 2023. 04. 00 | |
dc.relation.references | Ameen F, Alsarraf MJ, Abalkhail T, Stephenson SL (2024) Evaluation of resistance patterns and bioremoval efficiency of hydrocarbons and heavy metals by the mycobiome of petroleum refining wastewater in Jazan with assessment of molecular typing and cytotoxicity of Scedosporium apiospermum JAZ-20. Heliyon 10(12):e32954. https:// doi. org/ 10. 1016/j. heliy on. 2024. e32954 | |
dc.relation.references | Ameen FA, Hamdan AM, El-Naggar MY (2020) Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Sci Rep 10(1):1–11. https:// doi. org/ 10. 1038/ s41598- 019- 57210-3 | |
dc.relation.references | Arunlertaree C, Kaewsomboon W, Kumsopa A, Pokethitiyook P, Panyawathanakit P (2007) Removal of lead from battery manufacturing wastewater by egg shell. Songklanakarin J Sci Technol 29(3):858–868 | |
dc.relation.references | Azimi A, Azari A, Rezakazemi M, Ansarpour M (2016) Removal of heavy metals from industrial wastewaters : a review. Chem- BioEng Rev 1:37–59. https:// doi. org/ 10. 1002/ cben. 20160 0010 | |
dc.relation.references | Baltazar MdosPG, Gracioso LH, Avanzi IR, Karolski B, Tenório JAS, do Nascimento CAO, Perpetuo EA (2019) Copper biosorption by Rhodococcus erythropolis isolated from the Sossego Mine – PA – Brazil. J Mater Res Technol 8(1):475– 483. https:// doi. org/ 10. 1016/j. jmrt. 2018. 04. 006 | |
dc.relation.references | Banerjee G, Pandey S, Ray AK, Kumar R (2015) Bioremediation of heavy metals by a novel bacterial strain Enterobacter cloacae and its antioxidant enzyme activity, flocculant production, and protein expression in presence of lead, cadmium, and nickel. Water Air Soil Pollut 226(91):1–9. https:// doi. org/ 10. 1007/ s11270- 015- 2359-9 | |
dc.relation.references | Barakat MA, Schmidt E (2010) Polymer-enhanced ultra filtration process for heavy metals removal from industrial wastewater. Des 256(1–3):90–93. https:// doi. org/ 10. 1016/j. desal. 2010. 02. 008 | |
dc.relation.references | Barba S, Villaseñor J, Rodrigo MA, Cañizares P (2021) Biostimulation versus bioaugmentation for the electro-bioremediation of 2,4-dichlorophenoxyacetic acid polluted soils. J Environ Manage 277:111424. https:// doi. org/ 10. 1016/j. jenvm an. 2020. 111424 | |
dc.relation.references | Bashir A, Ahmad L, Sozia M, Taniya A, Mudasir M, Bhat A (2019) Removal of heavy metal ions from aqueous system by ion - exchange and biosorption methods. Environ Chem Lett 17(2):729–754. https:// doi. org/ 10. 1007/ s10311- 018- 00828-y | |
dc.relation.references | Baskaran D, Byun H-S (2024) Current trend of polycyclic aromatic hydrocarbon bioremediation: mechanism, artificial mixed microbial strategy, machine learning, ground application, cost and policy implications. Chem Eng J 498:155334. https:// doi. org/ 10. 1016/j. cej. 2024. 155334 | |
dc.relation.references | Begum W, Rai S, Banerjee S, Bhattacharjee S, Mondal MH, Bhattarai A, Saha B (2022) A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Adv 12(15):9139– 9153. https:// doi. org/ 10. 1039/ D2RA0 0378C | |
dc.relation.references | Bergeson AR, Alper HS (2024) Advancing sustainable biotechnology through protein engineering. Trends Biochem Sci 49(11):955– 968. https:// doi. org/ 10. 1016/j. tibs. 2024. 07. 006 | |
dc.relation.references | Bestawy EE, Helmy S, Hussien H, Fahmy M, Amer R (2013) Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl Water Sci 3(1):181–192. https:// doi. org/ 10. 1007/ s13201- 012- 0071-0 | |
dc.relation.references | Bhattacharya A, Gupta A, Kaur A, Malik D (2014) Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. Appl Microbiol Biotechnol 98(23):9829–9841. https:// doi. org/ 10. 1007/ s00253- 014- 5910-5 | |
dc.relation.references | Bhattacharya J, Dev S, Das B (2018) Chapter 11 - design of wastewater bioremediation plant and systems. In: Bhattacharya J, Dev S, Das B (eds) Low Cost Wastewater Bioremediation Technology. Butterworth-Heinemann, pp 265–313. https:// doi. org/ 10. 1016/ B978-0- 12- 812510- 6. 00011-5 | |
dc.relation.references | Biswas S, Jayaram S, Philip I, Balasubramanian B, Pappuswamy M, Barceló D, Chelliapan S, Kamyab H, Sarojini S, Vasseghian Y (2024) Appraisal of the potential of endophytic bacterium Bacillus amyloliquefaciens from Alternanthera philoxeroides: a triple approach to heavy metal bioremediation, diesel biodegradation, and biosurfactant production. J Environ Chem Eng 12(5):113454. https:// doi. org/ 10. 1016/j. jece. 2024. 113454 | |
dc.relation.references | Blanco-Vieites M, Suárez-Montes D, Delgado F, Álvarez-Gil M, Battez AH, Rodríguez E (2022) Removal of heavy metals and hydrocarbons by microalgae from wastewater in the steel industry. Algal Res 64:102700. https:// doi. org/ 10. 1016/j. algal. 2022. 102700 | |
dc.relation.references | Bondarenko O, Rõlova T, Kahru A, Ivask A (2008) Bioavailability of Cd, Zn and Hg in soil to nine recombinant luminescent metal sensor bacteria. Sensors (Basel) 8:6899–6923. https:// doi. org/ 10. 3390/ s8116 899 | |
dc.relation.references | Bora AJ, Dutta RK (2019) Journal of water process engineering removal of metals (Pb, Cd, Cu, Cr, Ni, and Co) from drinking water by oxidation-coagulation-absorption at optimized pH. J Water Process Eng 31:100839. https:// doi. org/ 10. 1016/j. jwpe. 2019. 100839 | |
dc.relation.references | Budi RMS, Rahardja BS, Masithah ED (2020) Potential concentration of heavy metal copper (Cu) and microalgae growth Spirulina plantesis in culture media. IOP Conf Ser Earth Environ Sci. https:// doi. org/ 10. 1088/ 1755- 1315/ 441/1/ 012147 | |
dc.relation.references | Buendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera- Díaz CE, Vernon-Carter EJ (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101(15):5862–5867. https:// doi. org/ 10. 1016/j. biort ech. 2010. 03. 027 | |
dc.relation.references | Bulgariu L, Gavrilescu M (2015) Bioremediation of heavy metals by microalgae. In: Handbook of marine microalgae: biotechnology advances, issue 3, pp 457–469. https:// doi. org/ 10. 1016/ B978-0- 12- 800776- 1. 00030-3 | |
dc.relation.references | Butter B, Santander P, Pizarro GdelC, Oyarzún DP, Tasca F, Sánchez J (2021) Electrochemical reduction of Cr(VI) in the presence of sodium alginate and its application in water purification. J Environ Sci (China) 101:304–312. https:// doi. org/ 10. 1016/j. jes. 2020. 08. 033 | |
dc.relation.references | Callisaya MP, Fuentes DP, Braga VHA, Finzi-Quintão CM, Oliveira PV, Petri DFS (2024) Harnessing carboxymethyl cellulose and Moringa oleifera seed husks for sustainable treatment of a multimetal real waste. Environ Res 252:118970. https:// doi. org/ 10. 1016/j. envres. 2024. 118970 | |
dc.relation.references | Chai WS, Tan WG, Halimatul Munawaroh HS, Gupta VK, Ho SH, Show PL (2021) Multifaceted roles of microalgae in the application of wastewater biotreatment: a review. Environ Pollut. https:// doi. org/ 10. 1016/j. envpol. 2020. 116236 | |
dc.relation.references | Chan A, Salsali H, McBean E (2014) Heavy metal removal (copper and zinc) in secondary effluent from wastewater treatment plants by microalgae. ACS Sustain Chem Eng 2(2):130–137. https:// doi. org/ 10. 1021/ sc400 289z | |
dc.relation.references | Charan K, Mandal J, Bhattacharyya P (2024) Application of autochthonous extremophilic Bacillus xiamenensis in remediation of groundwater- a sorption-based metal cleaning approach. Groundw Sustain Dev 24. https:// doi. org/ 10. 1016/j. gsd. 2023. 101063 | |
dc.relation.references | Chauhan D, Sankararamakrishnan N (2008) Highly enhanced adsorption for decontamination of lead ions from battery wastewaters using chitosan functionalized with xanthate. Bioresour Technol 99(18):9021–9024. https:// doi. org/ 10. 1016/j. biort ech. 2008. 04. 024 | |
dc.relation.references | Chauhan M, Solanki M, Nehra K (2017) Putative mechanism of cadmium bioremediation employed by resistant bacteria. Jordan J Biol Sci 10(2):101–107 | |
dc.relation.references | Chellaiah ER (2018) Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Appl. Water Sci. 8:1–10. https:// doi. org/ 10. 9734/ ajsspn/ 2017/ 36868 | |
dc.relation.references | Chen Q, Yao Y, Li X, Lu J, Zhou J, Huang Z (2018) Comparison of heavy metal removals from aqueous solutions by chemical Chen Q, Yao Y, Li X, Lu J, Zhou J, Huang Z (2018) Comparison of heavy metal removals from aqueous solutions by chemical | |
dc.relation.references | Chen S, Guo Y, Cai W, Huang Q (2024) Selective adsorption of oxidized yeast glucan for Pb2+: influencing factors, adsorption site and mechanism. Int J Biol Macromol 282:137074. https://d oi. org/ 10. 1016/j. ijbio mac. 2024. 137074 | |
dc.relation.references | Choumane R, Peulon S (2021) Development of an efficient electrochemical process for removing and separating soluble Pb (II) in aqueous solutions in presence of other heavy metals: studies of key parameters. Chem Eng J 130161. https:// doi. org/ 10. 1016/j. cej. 2021. 130161 | |
dc.relation.references | Chug R, Mathur S, Kothari SL, Harish a, Gour VS (2021) Maximizing EPS production from Pseudomonas aeruginosa and its application in Cr and Ni sequestration. Biochem Biophys Rep 26:100972. https:// doi. org/ 10. 1016/j. bbrep. 2021. 100972 | |
dc.relation.references | Clemens S (2001) Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation. Int J Occup Med Environ Health 14(3):235–239 | |
dc.relation.references | Collin MS, Venkatraman SK, Vijayakumar N, Kanimozhi V, Arbaaz SM, Stacey RGS, Anusha J, Choudhary R, Lvov V, Tovar GI, Senatov F, Koppala S, Swamiappan S (2022) Bioaccumulation of lead (Pb) and its effects on human: a review. Journal of Hazardous Materials Advances 7:100094. https:// doi. org/ 10. 1016/j. hazadv. 2022. 100094 | |
dc.relation.references | Concórdio-Reis P, Reis MAM, Freitas F (2020) Biosorption of heavy metals by the bacterial exopolysaccharide FucoPol. Appl Sci. https:// doi. org/ 10. 3390/ app10 196708 | |
dc.relation.references | DalCorso G, Fasani E, Manara A, Visioli G, Furini A (2019) Heavy metal pollutions: state of the art and innovation in phytoremediation. Int J Mol Sci. https:// doi. org/ 10. 3390/ ijms2 01434 12 | |
dc.relation.references | Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals - an overview. Indian J Biotechnol 7(2):159–169 | |
dc.relation.references | De la Parra-Guerra ACC, Truyol-Padilla J, García-Alzate C, Fuentes Gandara F (2025) Gender-based violence as a barrier to women rights towards socio- environmental sustainability. Glob J Environ Sci Manag 11(1). https:// doi. org/ 10. 22034/ gjesm. 2025. 01. 20 | |
dc.relation.references | Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes, pp 2189–2212. https:// doi. org/ 10. 3390/ su702 2189 | |
dc.relation.references | Dobrowolski R, Szcześ A, Czemierska M, Jarosz-Wikołazka A (2017) Studies of cadmium(II), lead(II), nickel(II), cobalt(II) and chromium(VI) sorption on extracellular polymeric substances produced by Rhodococcus opacus and Rhodococcus rhodochrous. Bioresour Technol 225:113–120. https:// doi. org/ 10. 1016/j. biort ech. 2016. 11. 040 | |
dc.relation.references | Dusengemungu L, Kasali G, Gwanama C, Mubemba B (2021) Overview of fungal bioleaching of metals. Environ Adv 5:100083. https:// doi. org/ 10. 1016/j. envadv. 2021. 100083 | |
dc.relation.references | Dwivedi S, Mishra A, Kumar A, Tripathi P, Dave R, Dixit G, Tiwari KK, Srivastava S, Shukla MK, Tripathi RD (2012) Bioremediation potential of genus Portulaca L. collected from industrial areas in Vadodara, Gujarat, India. Clean Technol Environ Policy 14(2):223–228. https:// doi. org/ 10. 1007/ s10098- 011- 0389-6 | |
dc.relation.references | El-Sheekh MM, Farghl AA, Galal HR, Bayoumi HS (2016) Bioremediation of different types of polluted water using microalgae. Rendiconti Lincei 27(2):401–410. https:// doi. org/ 10. 1007/ s12210- 015- 0495-1 | |
dc.relation.references | Emenike CU, Jayanthi B, Agamuthu P, Fauziah SH (2018) Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environ Rev 26(2):156–168. https:// doi. org/ 10. 1139/ er- 2017- 0045 | |
dc.relation.references | Fakhri Y, Bjørklund G, Bandpei AM, Chirumbolo S, Keramati H, Hosseini Pouya R, Asadi A, Amanidaz N, Sarafraz M, Sheikhmohammad A, Alipour M, Baninameh Z, Mohseni SM, Sarkhosh M, Ghasemi SM (2018) Concentrations of arsenic and lead in rice (Oryza sativa L.) in Iran: a systematic review and carcinogenic risk assessment. Food Chem Toxicol 113:267–277. https:// doi. org/ 10. 1016/j. fct. 2018. 01. 018 | |
dc.relation.references | Fleischmann J, Hanicke M, Horetsky E, Ibrahim D, Jautelat S, Linder M, Schaufuss P, Torscht L, Van de Rijt A (2023) Battery 2030: resilient, sustainable, and circular. McKinsey & Company | |
dc.relation.references | Folens K, Huysman S, Van Hulle S, Du Laing G (2017) Chemical and economic optimization of the coagulation-flocculation process for silver removal and recovery from industrial wastewater. Sep Purif Technol 179:145–151. https:// doi. org/ 10. 1016/j. seppur. 2017. 02. 013 | |
dc.relation.references | Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14. https:// doi. org/ 10. 1016/j. biort ech. 2013. 12. 102 | |
dc.relation.references | Fulekar MH, Sharma J, Tendulkar A (2012) Bioremediation of heavy metals using biostimulation in laboratory bioreactor. Environ Monit Assess 184(12):7299–7307. https:// doi. org/ 10. 1007/ s10661- 011- 2499-3 | |
dc.relation.references | Fulke AB, Ratanpal S, Sonker S (2024) Understanding heavy metal toxicity: implications on human health, marine ecosystems and bioremediation strategies. Mar Pollut Bull 206:116707. https:// doi. org/ 10. 1016/j. marpo lbul. 2024. 116707 | |
dc.relation.references | Gao L, Yan X (2016) Nanozymes : an emerging field bridging nanotechnology and biology. Sci China Life Sci 59(4):400–402. https:// doi. org/ 10. 1007/ s11427- 016- 5044-3 | |
dc.relation.references | Gao X, Wei M, Zhang X, Xun Y, Duan M, Yang Z, Zhu M, Zhu Y, Zhuo R (2024) Copper removal from aqueous solutions by white rot fungus Pleurotus ostreatus GEMB-PO1 and its potential in co-remediation of copper and organic pollutants. Bioresour Technol 395:130337. https:// doi. org/ 10. 1016/j. biort ech. 2024. 130337 | |
dc.relation.references | Garzón JM, Rodríguez Miranda JP, Hernández Gómez C (2017) Aporte de la biorremediación para solucionar problemas de contaminación y su relación con el desarrollo sostenible. Universidad y Salud 19(2):309–318. https:// doi. org/ 10. 22267/ rus. 171902. 93 | |
dc.relation.references | Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health. https:// doi. org/ 10. 3390/ ijerp h1711 3782 | |
dc.relation.references | Gerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185. https:// doi. org/ 10. 1016/j. plant sci. 2016. 11. 016 | |
dc.relation.references | Ghaed V, Salimi A, Attar R, Mirvakili A, Salimian J (2025) From waste to resource: evaluating microalgae for enhanced metal adsorption in oil and gas refinery effluents. J Environ Chem Eng 13(2):115844. https:// doi. org/ 10. 1016/j. jece. 2025. 115844 | |
dc.relation.references | Ghorai S, Sinhamahpatra A, Sarkar A, Panda AB, Pal S (2012) Novel biodegradable nanocomposite based on XG-g-PAM/SiO2: application of an efficient adsorbent for Pb2+ ions from aqueous solution. Bioresour Technol 119:181–190. https:// doi. org/ 10. 1016/j. biort ech. 2012. 05. 063 | |
dc.relation.references | Gola D, Dey P, Bhattacharya A, Mishra A, Malik A, Namburath M, Ahammad SZ (2016) Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresour Technol 218:388–396. https:// doi. org/ 10. 1016/j. biort ech. 2016. 06. 096 | |
dc.relation.references | Gomathi T, Saranya M, Radha E, Vijayalakshmi K, Prasad PS, Sudha PN (2020) Bioremediation. In: Encyclopedia of marine biotechnology, pp 3139–3172. https:// doi. org/ 10. 1002/ 97811 19143 802. ch140 | |
dc.relation.references | Goodarzi N, Ashrafi-Peyman Z, Khani E, Moshfegh AZ (2023) Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts 13(7):1102. https:// doi. org/ 10. 3390/ catal 13071 102 | |
dc.relation.references | Gottesfeld P, Pokhrel AK (2011) Review: lead exposure in battery manufacturing and recycling in developing countries and among children in nearby communities. J Occup Environ Hyg 8(9):520–532. https:// doi. org/ 10. 1080/ 15459 624. 2011. 601710 | |
dc.relation.references | Greipsson S (2011) Phytoremediation. Nature Education Knowledge 3(10):7 | |
dc.relation.references | Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465(1–2):190–198. https:// doi. org/ 10. 1016/ s0005- 2736(00) 00138-3 | |
dc.relation.references | Gunatilake SK (2015) Methods of removing heavy metals from industrial wastewater. J Multidiscip Eng Sci Stud 1(1):12–18 | |
dc.relation.references | Guo W, Fu Z, Wang H, Liu S, Wu F, Giesy JP (2018) Removal of antimonate (Sb(V)) and antimonite (Sb(III)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): dependence on influencing factors and insights into removal mechanisms. Sci Total Environ 644:1277–1285. https:// doi. org/ 10. 1016/j. scito tenv. 2018. 07. 034 | |
dc.relation.references | Gupta NK, Gupta A, Ramteke P, Sahoo H, Sengupta A (2019) Biosorption-a green method for the preconcentration of rare earth elements (REEs) from waste solutions: a review. J Mol Liq 274:148–164. https:// doi. org/ 10. 1016/j. molliq. 2018. 10. 134 | |
dc.relation.references | Gupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep (Amst) 13:58–71. https:// doi. org/ 10. 1016/j. btre. 2016. 12. 006 | |
dc.relation.references | Gusti Wibowo Y, Tyaz Nugraha A, Rohman A (2023) Phytoremediation of several wastewater sources using Pistia stratiotes and Eichhornia crassipes in Indonesia. Environ Nanotechnol, Monit Manag 20:100781. https:// doi. org/ 10. 1016/j. enmm. 2023. 100781 | |
dc.relation.references | Guzzi G, Ronchi A, Pigatto P (2021) Toxic effects of mercury in humans and mammals. Chemosphere 263:127990. https:// doi. org/ 10. 1016/j. chemo sphere. 2020. 127990 | |
dc.relation.references | Haferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47(6):453–467. https:// doi. org/ 10. 1002/ jobm. 20070 0275 | |
dc.relation.references | Haidar Z, Fatema K, Shoily SS, Sajib AA (2023) Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicol Rep 10:554–570. https:// doi. org/ 10. 1016/j. toxrep. 2023. 04. 010 | |
dc.relation.references | Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K, Gaines L, Anderson P (2019) Recycling lithium-ion batteries from electric vehicles. Nature 575(7781):75–86. https:// doi. org/ 10. 1038/ s41586- 019- 1682-5 | |
dc.relation.references | Hasin AAL, Gurman SJ, Murphy LM, Perry A, Gardiner PHE (2010) Remediation of chromium (VI) by a methane-oxidizing bacterium. Environ Sci Technol 44(1):400–405 | |
dc.relation.references | Hassan SW, El-Kassas HY (2012) Biosorption of cadmium from aqueous solutions using a local fungus Aspergillus cristatus (Glaucus group). Afr J Biotech 11(9):2276–2286 | |
dc.relation.references | Hossein M, Hadi M, Jamali A (2017) A novel polylysine – resorcinol base g -alumina nanotube hybrid material for effective adsorption/ preconcentration of cadmium from various matrices. J Ind Eng Chem 46:165–174. https:// doi. org/ 10. 1016/j. jiec. 2016. 10. 027 | |
dc.relation.references | Hosseini SP, Mousavi SM, Jafari A (2024) Exploring biosynthesis strategies to boost the yield of exopolysaccharide-protein blend from Bacillus arachidis SY8(T), an isolated native strain, as a potent adsorbent for heavy metals removal. Int J Biol Macromol 271:132634. https:// doi. org/ 10. 1016/j. ijbio mac. 2024. 132634 | |
dc.relation.references | Ibrahim HS, Ammar NS, Soylak M, Ibrahim M (2012) Removal of Cd(II) and Pb(II) from aqueous solution using dried water hyacinth as a biosorbent. Spectrochim Acta A Mol Biomol Spectrosc 96:413–420. https:// doi. org/ 10. 1016/j. saa. 2012. 05. 039 | |
dc.relation.references | Igiri BE, Okoduwa SIR, Idoko GO, Akabuogu EP, Adeyi A, Ejiogu IK (2018) Toxicity and bioremediation of heavy metalscontaminated ecosystem from tannery wastewater: a review. J Toxicol 7:609–616. https:// doi. org/ 10. 1007/ 978-3- 319- 00557- 7_ 50 | |
dc.relation.references | Imron MF, Setiawan W, Putranto TWC, Abdullah SRS, Kurniawan SB (2024) Biosorption of chromium by live and dead cells of Bacillus nitratireducens isolated from textile effluent. Chemosphere 359:142389. https:// doi. org/ 10. 1016/j. chemo sphere. 2024. 142389 | |
dc.relation.references | Institute for Health Metrics Evaluation (2020) GBD Compare data visualization-IHM | |
dc.relation.references | International-Lead-Association (2015) Lead production statistics. Angewandte Chemie International Edition 6(11):951–952. Retrieved from: https:// ila- lead. org/ resou rces/ lead- produ ctionstati stics/. Accessed: 10 Jun 2021 | |
dc.relation.references | Işıldar A, van Hullebusch ED, Lenz M, Du Laing G, Marra A, Cesaro A, Panda S, Akcil A, Kucuker MA, Kuchta K (2019) Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – a review. J Hazard Mater 362:467–481. https:// doi. org/ 10. 1016/j. jhazm at. 2018. 08. 050 | |
dc.relation.references | Ivask A, Suarez E, Patel T, Boren D, Ji Z, Holden P, Godwin H (2012) Genome-wide bacterial toxicity screening uncovers the mechanisms of toxicity of a cationic polystyrene nanomaterial. Environmental Science & Technology 46(4):2398–2405. https:// doi. org/ 10. 1021/ es203 087m | |
dc.relation.references | Iyer M, Anand U, Thiruvenkataswamy S, Babu HWS, Narayanasamy A, Prajapati VK, Tiwari CK, Gopalakrishnan AV, Bontempi E, Sonne C, Barceló D, Vellingiri B (2023) A review of chromium (Cr) epigenetic toxicity and health hazards. Sci Total Environ 882:163483. https:// doi. org/ 10. 1016/j. scito tenv. 2023. 163483 | |
dc.relation.references | Jaafari J, Yaghmaeian K (2019) Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere 217:447–455. https:// doi. org/ 10. 1016/j. chemo sphere. 2018. 10. 205 | |
dc.relation.references | Jacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K, Pugazhendhi A (2018) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manage 217:56–70. https:// doi. org/ 10. 1016/j. jenvm an. 2018. 03. 077 | |
dc.relation.references | Javaid A, Bajwa R (2007) Biosorption of Cr (III) ions from tannery wastewater by Pleurotus ostreatus. Mycopath 5:71–79 | |
dc.relation.references | Ji S, Cherry CR, Zhou W, Sawhney R, Wu Y, Cai S, Wang S, Marshall JD (2015) Environmental justice aspects of exposure to PM2.5 emissions from electric vehicle use in China. Environ Sci Technol 49(24):13912–13920. https:// doi. org/ 10. 1021/ acs. est. 5b049 27 | |
dc.relation.references | Jiang Z, Jiang L, Zhang L, Su M, Tian D, Wang T, Sun Y, Nong Y, Hu S, Wang S, Li Z (2020) Contrasting the Pb (II) and Cd (II) tolerance of Enterobacter sp. via its cellular stress responses. Environ Microbiol 22(4):1507–1516. https:// doi. org/ 10. 1111/ 1462- 2920. 14719 | |
dc.relation.references | Jones PK, Stimming U, Lee AA (2022) Impedance-based forecasting of lithium-ion battery performance amid uneven usage. Nat Commun 13(1):4806. https:// doi. org/ 10. 1038/ s41467- 022- 32422-w | |
dc.relation.references | Kadam A, Saratale RG, Shinde S, Yang J, Hwang K, Mistry B, Saratale GD, Lone S, Kim D-Y, Sung J-S, Ghodake G (2019) Adsorptive remediation of cobalt oxide nanoparticles by magnetized α-cellulose fibers from waste paper biomass. Bioresour Technol 273:386–393. https:// doi. org/ 10. 1016/j. biort ech. 2018. 11. 041 | |
dc.relation.references | Kalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata – prospective for phytoextraction from contaminated water and soil. Curr Sci 100(6):888–894 | |
dc.relation.references | Kang CH, Kwon YJ, So JS (2016) Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng 89:64–69. https:// doi. org/ 10. 1016/j. ecole ng. 2016. 01. 023 | |
dc.relation.references | Kang SH, Singh S, Kim J, Lee W, Mulchandani A, Chen W (2007) Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation †. Appl Environ Microbiol 73(19):6317–6320. https:// doi. org/ 10. 1128/ AEM. 01237- 07 | |
dc.relation.references | Karnwal A (2024) Unveiling the promise of biosorption for heavy metal removal from water sources. Desalin Water Treat 319:100523. https:// doi. org/ 10. 1016/j. dwt. 2024. 100523 | |
dc.relation.references | Karnwal A, Kumar G, Din Mahmoud A. El, Dutta J, Singh R, Mohammad Said Al-Tawaha AR, Malik T (2025) Eco-engineered remediation: microbial and rhizosphere-based strategies for heavy metal detoxification. Curr Res Biotechnol 9:100297. https:// doi. org/ 10. 1016/j. crbiot. 2025. 100297 | |
dc.relation.references | Khan MU, Malik RN, Muhammad S (2013) Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere 93(10):2230–2238. https:// doi. org/ 10. 1016/j. chemo sphere. 2013. 07. 067 | |
dc.relation.references | Kim IH, Choi JH, Joo JO, Kim YK, Choi JW, Oh BK (2015) Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. J Microbiol Biotechnol 25(9):1542– 1546. https:// doi. org/ 10. 4014/ jmb. 1504. 04067 | |
dc.relation.references | Kiray E, Er C, Kariptas E, Ciftci H (2017) Biosorption and separation/ preconcentration of lead and nickel on Rhodococcus ruber biomass. Fresenius Environ Bull 25(12):7740–7749 | |
dc.relation.references | Kulkarni SJ, Dhokpande SR, Kaware JP (2014) A review on studies on effect of heavy metals on man and environment. Int J Res Appl Sci Eng Technol 2:227–229 | |
dc.relation.references | Kumar D, Kumar D, Singh Y, Hadi S (2017) Preparation of CuO nanoparticles using Tamarindus indica pulp extract for removal of As (III): optimization of adsorption process by ANN-GA. J Environ Chem Eng 5(1):1302–1318. https:// doi. org/ 10. 1016/j. jece. 2017. 01. 046 | |
dc.relation.references | Kumar N, Hans S, Verma R, Srivastava A (2020) Acclimatization of microalgae Arthrospira platensis for treatment of heavy metals in Yamuna River. Water Sci Eng 13(3):214–222. https:// doi. org/ 10. 1016/j. wse. 2020. 09. 005 | |
dc.relation.references | Kumar N, Kumar S, Bauddh K, Dwivedi N, Shukla P, Singh DP, Barman SC (2015) Toxicity assessment and accumulation of metals in radish irrigated with battery manufacturing industry effluent. Int J Veg Sci 21(4):373–385. https:// doi. org/ 10. 1080/ 19315 260. 2014. 880771 | |
dc.relation.references | Kumar RR, Congeevaram S, Thamaraiselvi K (2011) Evaluation of isolated fungal strain from e-waste recycling facility for effective sorption of toxic heavy metal Pb (II) ions and fungal protein molecular characterization- a mycoremediation approach. Asian J Exp Biol Sci 2:342–347 | |
dc.relation.references | Kumar S, Rahman Md. A., Islam Md. R., Hashem Md. A., Rahman MM (2022) Lead and other elements-based pollution in soil, crops and water near a lead-acid battery recycling factory in Bangladesh. Chemosphere 290:133288. https:// doi. org/ 10. 1016/j. chemo sphere. 2021. 133288 | |
dc.relation.references | Lee KM, Abdullah AH (2015) Synthesis and characterization of zinc oxide/maghemite nanocomposites: influence of heat treatment on photocatalytic degradation of 2,4-dichlorophenoxyacetic acid. Mater Sci Semicond Process 30:298–306. https:// doi. org/ 10. 1016/j. mssp. 2014. 10. 017 | |
dc.relation.references | Leong YK, Chang JS (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol 303(December 2019). https:// doi. org/ 10. 1016/j. biort ech. 2020. 122886 | |
dc.relation.references | Li JT, Liao B, Lan CY, Ye ZH, Baker AJM, Shu WS (2010) Cadmium tolerance and accumulation in cultivars of a high-biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction. J Environ Qual 39(4):1262–1268. https:// doi. org/ 10. 2134/ jeq20 09. 0195 | |
dc.relation.references | Li S, Zhao B, Jin M, Hu L, Zhong H, He Z (2020) A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. J Hazard Mater 400:123255. https:// doi. org/ 10. 1016/j. jhazm at. 2020. 123255 | |
dc.relation.references | Lu J, Xiong R, Tian J, Wang C, Sun F (2023) Deep learning to estimate lithium-ion battery state of health without additional degradation experiments. Nat Commun 14(1):2760. https:// doi. org/ 10. 1038/ s41467- 023- 38458-w | |
dc.relation.references | Macchi G, Pagano M, Santori M, Tiravanti G (1993) Battery industry wastewater: Pb removal and produced sludge. Water Res 27(10):1511–1518. https:// doi. org/ 10. 1016/ 0043- 1354(93) 90095-Y | |
dc.relation.references | Machado MD, Soares EV, Soares HMVM (2010) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J Hazard Mater 180(1–3):347–353. https:// doi. org/ 10. 1016/j. jhazm at. 2010. 04. 037 | |
dc.relation.references | Mahale M, Samson R, Dharne M, Kodam K (2024) Harnessing the potential of Achromobacter sp. M1 to remediate heavy metals from wastewater: genomic insights and environmental applications. J Hazard Mater 480:136125. https:// doi. org/ 10. 1016/j. jhazm at. 2024. 136125 | |
dc.relation.references | Machado MD, Soares EV, Soares HMVM (2010) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J Hazard Mater 180(1–3):347–353. https:// doi. org/ 10. 1016/j. jhazm at. 2010. 04. 037 | |
dc.relation.references | Mahale M, Samson R, Dharne M, Kodam K (2024) Harnessing the potential of Achromobacter sp. M1 to remediate heavy metals from wastewater: genomic insights and environmental applications. J Hazard Mater 480:136125. https:// doi. org/ 10. 1016/j. jhazm at. 2024. 136125 | |
dc.relation.references | Makhanya BN, Nyandeni N, Ndulini SF, Mthembu MS (2021) Application of green microalgae biofilms for heavy metals removal from mine effluent. Physics and Chemistry of the Earth, Parts A/B/C 124:103079. https:// doi. org/ 10. 1016/j. pce. 2021. 103079 | |
dc.relation.references | Manzoor J, Sharma M, Wani KA (2018) Heavy metals in vegetables and their impact on the nutrient quality of vegetables: a review. J Plant Nutr 41(13):1744–1763. https:// doi. org/ 10. 1080/ 01904 167. 2018. 14623 82 | |
dc.relation.references | Markets-and-Markets. (2019). Retrieved from: https:// www. marke tsand marke ts. com/ Market- Repor ts/ elect ric- vehic le- market- 20937 1461. html? gclid= Cj0KC QjwkZ iFBhD 9ARIs AGxFX 8Bia8 G0Sml RThUH q_- FpeWR QxEUN ijBZd NDD9O fFimv TaF32 Fn3b9 UaAht LEALw_ wcB. Accessed: 20 May 2021 | |
dc.relation.references | Martínez-Quiroz M, López-Maldonado EA, Ochoa-Terán A, Oropeza- Guzman MT, Pina-Luis GE, Zeferino-Ramírez J (2017) Innovative uses of carbamoyl benzoic acids in coagulation-flocculation’s processes of wastewater. Chem Eng J 307:981–988. https:// doi. org/ 10. 1016/j. cej. 2016. 09. 011 | |
dc.relation.references | Massoud R, Hadiani MR, Hamzehlou P, Khosravi-Darani K (2019) Bioremediation of heavy metals in food industry: application of Saccharomyces cerevisiae. Electron J Biotechnol 37:56–60. https:// doi. org/ 10. 1016/j. ejbt. 2018. 11. 003 | |
dc.relation.references | Mercogliano R, Avio CG, Regoli F, Anastasio A, Colavita G, Santonicola S (2020) Occurrence of microplastics in commercial seafood under the perspective of the human food chain. A review. J Agric Food Chem 68(19):5296–5301. https:// doi. org/ 10. 1021/ acs. jafc. 0c012 09 | |
dc.relation.references | Mesjasz-Przybylowicz J (2004) Uptake of cadmium, lead, nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Cracov Bot 46:75–85 | |
dc.relation.references | Mir IS, Riaz A, Roy JS, Fréchette J, Morency S, Ponce Gomes O, Dumée LF, Greener J, Messaddeq Y (2024) Removal of cadmium and chromium heavy metals from aqueous medium using composite bacterial cellulose membrane. Chem Eng J 490:151665. https:// doi. org/ 10. 1016/j. cej. 2024. 151665 | |
dc.relation.references | Mire CE, Tourjee Ja, Brien WFO, Ramanujachary KV, Hecht GB (2004) Lead precipitation by Vibrio harveyi. Appl Environ Microbiol 70(2):855–864. https:// doi. org/ 10. 1128/ AEM. 70.2. 855 | |
dc.relation.references | Monroy-Licht A (2022) Effect of phosphate on arsenic species uptake in plants under hydroponic conditions. J Plant Res. https:// doi. org/ 10. 1007/ s10265- 022- 01381-0 | |
dc.relation.references | Monroy-Licht A, Carranza-Lopez L, De la Parra-Guerra AC, Acevedo- Barrios R (2024) Unlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal-06 clean water. Environ Sci Pollut Res 31(31):43561–43582. https:// doi. org/ 10. 1007/ s11356- 024- 33698-9 | |
dc.relation.references | Nivetha N, Srivarshine B, Sowmya B, Rajendiran M, Saravanan P, Rajeshkannan R, Rajasimman M, Pham THT, Shanmugam V, Dragoi E-N (2023) A comprehensive review on bio-stimulation and bio-enhancement towards remediation of heavy metals degeneration. Chemosphere 312:137099. https:// doi. org/ 10. 1016/j. chemo sphere. 2022. 137099 | |
dc.relation.references | Oladimeji TE, Oyedemi M, Emetere ME, Agboola O, Adeoye JB, Odunlami OA (2024) Review on the impact of heavy metals from industrial wastewater effluent and removal technologies. Heliyon. https:// doi. org/ 10. 1016/j. heliy on. 2024. e40370 | |
dc.relation.references | Omokhagbor Adams G, Tawari Fufeyin P, Eruke Okoro S, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmention: a review. Int J Environ Bioremediation Biodegrad 3(1):28–39. https:// doi. org/ 10. 12691/ ijebb-3- 1-5 | |
dc.relation.references | Orellana R, Cumsille A, Piña-Gangas P, Rojas C, Arancibia A, Donghi S, Stuardo C, Cabrera P, Arancibia G, Cárdenas F, Salazar F, González M, Santis P, Abarca-Hurtado J, Mejías M, Seeger M (2022) Economic evaluation of bioremediation of hydrocarboncontaminated urban soils in Chile. Sustainability 14(19):11854 | |
dc.relation.references | Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McKenzie JE et al (2021) PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 372:n160. https:// doi. org/ 10. 1136/ bmj. n160 | |
dc.relation.references | Panda JR, Sen S, Sarkar P (2022) Chapter 13 - bioremediation of heavy metal pollutants in contaminated environment: principle, advantages, limitations, and future. In: Kapoor RT, Shah MP (eds) Synergistic approaches for bioremediation of environmental pollutants : recent advances and challenges. Academic Press, pp 263–272. https:// doi. org/ 10. 1016/ B978-0- 323- 91860-2. 00019-1 | |
dc.relation.references | Parvathi K, Nagendran R, Nareshkumar R (2007) Lead biosorption onto waste beer yeast by-product, a means to decontaminate effluent generated from battery manufacturing industry. Electron J Biotechnol. https:// doi. org/ 10. 2225/ vol10- issue1- fullt ext- 13 | |
dc.relation.references | Pieper D, Santos VM, Golyshin P (2004) Genomic and mechanistic insights into the biodegradation of organic pollutants. Curr Opin Biotechnol 15:215–224. https:// doi. org/ 10. 1016/j. copbio. 2004. 03. 008 | |
dc.relation.references | Poolachira S, Velmurugan S (2023) Graphene oxide/hydrotalcite modified polyethersulfone nanohybrid membrane for the treatment of lead ion from battery industrial effluent. Chin J Chem Eng 60:253–261. https:// doi. org/ 10. 1016/j. cjche. 2023. 01. 021 | |
dc.relation.references | Poonam Bharti SK, Kumar N (2018) Kinetic study of lead (Pb2+) removal from battery manufacturing wastewater using bagasse biochar as biosorbent. Appl Water Sci 8(4):119. https:// doi. org/ 10. 1007/ s13201- 018- 0765-z | |
dc.relation.references | Pranudta A, Chanthapon N, Kidkhunthod P, El-Moselhy MM, Nguyen TT, Padungthon S (2021) Selective removal of Pb from lead-acid battery wastewater using hybrid gel cation exchanger loaded with hydrated iron oxide nanoparticles: fabrication, characterization, and pilot-scale validation. J Environ Chem Eng 9(5):106282. https:// doi. org/ 10. 1016/j. jece. 2021. 106282 | |
dc.relation.references | Rada S, Unguresan ML, Bolundut L, Rada M, Vermesan H, Pica M, Culea E (2016) Structural and electrochemical investigations of the electrodes obtained by recycling of lead acid batteries. J Electroanal Chem 780:187–196. https://d oi. org/ 10. 1016/j. jelec hem. 2016. 09. 025 | |
dc.relation.references | Raj K, Sardar UR, Bhargavi E, Devi I, Bhunia B, Tiwari ON (2018) Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: a critical review. Carbohydr Polym 199:353–364. https:// doi. org/ 10. 1016/j. carbp ol. 2018. 07. 037 | |
dc.relation.references | Ramírez Calderón OA, Abdeldayem OM, Pugazhendhi A, Rene ER (2020) Current updates and perspectives of biosorption technology: an alternative for the removal of heavy metals from wastewater. Curr Pollut Rep 6(1):8–27. https:// doi. org/ 10. 1007/ s40726- 020- 00135-7 | |
dc.relation.references | Rao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10(3):333–353 | |
dc.relation.references | Ratul AK, Hassan M, Uddin MK, Sultana MS, Akbor MA, Ahsan MA (2018) Potential health risk of heavy metals accumulation in vegetables irrigated with polluted river water. Int Food Res J 25:329–338 | |
dc.relation.references | Roy D, Neogi S, De S (2021) Adsorptive removal of heavy metals from battery industry effluent using MOF incorporated polymeric beads: a combined experimental and modeling approach. J Hazard Mater 403(August 2020). https:// doi. org/ 10. 1016/j. jhazm at. 2020. 123624 | |
dc.relation.references | Roy PM, Sawant HH, Shelar PP, Sarode PU, Gawande SH (2024) Battery health management—A perspective of design, optimization, manufacturing, fault detection, and recycling. Energy Storage Saving 3(3):190–208. https:// doi. org/ 10. 1016/j. enss. 2024. 04. 001 | |
dc.relation.references | Rycewicz-borecki M, Mclean JE, Dupont RR (2016) Bioaccumulation of copper, lead, and zinc in six macrophyte species grown in simulated stormwater bioretention systems 166:267–275. https:// doi. org/ 10. 1016/j. jenvm an. 2015. 10. 019 | |
dc.relation.references | Sahu Ranjeev. K., Naraian R, Chandra V (2007) Accumulation of metals in naturally grown weeds (aquatic macrophytes) grown on an industrial effluent channel. CLEAN Soil Air Water 35(3):261– 265. https:// doi. org/ 10. 1002/ clen. 20070 0001 | |
dc.relation.references | Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. CLEAN Soil Air Water 39(8):735–741. https:// doi. org/ 10. 1002/ clen. 20100 0488 | |
dc.relation.references | Saleh TA, Mustaqeem M, Khaled M (2022) Water treatment technologies in removing heavy metal ions from wastewater: a review. Environ Nanotechnol Monit Manag 17:100617. https:// doi. org/ 10. 1016/j. enmm. 2021. 100617 | |
dc.relation.references | Sandeep G, Vijayalatha KR, Anitha T (2019) Heavy metals and its impact in vegetable crops. Int J Chem Stud 7(1):1612–1621 | |
dc.relation.references | Saravanakumar K, De Silva S, Santosh SS, Sathiyaseelan A, Ganeshalingam A, Jamla M, Sankaranarayanan A, Veeraraghavan VP, MubarakAli D, Lee J, Thiripuranathar G, Wang M-H (2022) Impact of industrial effluents on the environment and human health and their remediation using MOFs-based hybrid membrane filtration techniques. Chemosphere 307:135593. https:// doi. org/ 10. 1016/j. chemo sphere. 2022. 135593 | |
dc.relation.references | Sfakianakis DG, Renieri E, Kentouri M, Tsatsakis AM (2015) Effect of heavy metals on fish larvae deformities: a review. Environ Res 137:246–255. https:// doi. org/ 10. 1016/j. envres. 2014. 12. 014 | |
dc.relation.references | Shah M (2014) Environmental bioremediation: a low cost nature’s natural biotechnology for environmental clean-up. J Pet Environ Biotechnol 5(191):1–12 | |
dc.relation.references | Sharma A, Shiwang J, Lee A, Peng W (2023a) Equity implications of electric vehicles: a systematic review on the spatial distribution of emissions, air pollution and health impacts. Environ Res Lett 18(5):053001. https:// doi. org/ 10. 1088/ 1748- 9326/ acc87c | |
dc.relation.references | Sharma KR, Giri R, Sharma RK (2023b) Efficient bioremediation of metal containing industrial wastewater using white rot fungi. Int J Environ Sci Technol 20(1):943–950. https:// doi. org/ 10. 1007/ s13762- 022- 03914-5 | |
dc.relation.references | Sharma PK, Balkwill DL, Frenkel A, Vairavamurthy MA (2000) A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide.Appl Environ Microbiol 66(7):3083–3087. https:// doi. org/ 10. 1128/ AEM. 66.7. 3083- 3087. 2000 | |
dc.relation.references | Simonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22(18):13710–13723. https:// doi. org/ 10. 1007/ s11356- 015- 4171-x | |
dc.relation.references | Singh J, Ali A, Prakash V (2014) Removal of lead (II) from synthetic and batteries wastewater using agricultural residues in batch/column mode. Int J Environ Sci Technol 11(6):1759–1770. https:// doi. org/ 10. 1007/ s13762- 013- 0326-9 | |
dc.relation.references | Slattery M, Kendall A, Helal N, Whittaker ML (2023) What do frontline communities want to know about lithium extraction? Identifying research areas to support environmental justice in Lithium Valley, California. Energy Res Soc Sci 99:103043. https:// doi. org/ 10. 1016/j. erss. 2023. 103043 | |
dc.relation.references | Song Y, Ruan P, Mao C, Chang Y, Wang L, Dai L, Zhou P, Lu B, Zhou J, He Z (2022) Metal–organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett 14(1):218. https:// doi. org/ 10. 1007/ s40820- 022- 00960-z | |
dc.relation.references | Soudani A, Gholami A, Roozbahani MM, Sabzalipour S, Mojiri A (2024) Cyperus longus to bioremediate heavy metals in aqueous solutions. Green Anal Chem 11:100147. https:// doi. org/ 10. 1016/j. greeac. 2024. 100147 | |
dc.relation.references | Sreedevi PR, Suresh K, Jiang G (2022) Bacterial bioremediation of heavy metals in wastewater: a review of processes and applications. J Water Process Eng 48:102884. https://d oi.o rg/1 0.1 016/j. jwpe. 2022. 102884 | |
dc.relation.references | Srishti S, Raj SS, Vani B, Atkar A, Sridhar S, Madhu Mala M (2025) Enrichment of lithium ions for battery application by electrolysis through a nanoporous membrane. J Power Sources 626:235748. https:// doi. org/ 10. 1016/j. jpows our. 2024. 235748 | |
dc.relation.references | Strauss ML, Diaz LA, McNally J, Klaehn J, Lister TE (2021) Separation of cobalt, nickel, and manganese in leach solutions of waste lithium-ion batteries using Dowex M4195 ion exchange resin. Hydrometallurgy 206:105757. https:// doi. org/ 10. 1016/j. hydro met. 2021. 105757 | |
dc.relation.references | Su C, Geng Y, van Ewijk S, Borrion A, Zhang C (2025) Uncovering the evolution of the global nickel cycle and trade networks. Resour Conserv Recycl 215:108164. https:// doi. org/ 10. 1016/j. resco nrec. 2025. 108164 | |
dc.relation.references | Sudhakar MS, Aggarwal A, Sah MK (2020) Engineering biomaterials for the bioremediation : advances in nanotechnological approaches for heavy metals removal from natural resources. In: Emerging Technologies in Environmental Bioremediation. INC. https:// doi. org/ 10. 1016/ B978-0- 12- 819860- 5. 00014-6 | |
dc.relation.references | Sultana N, Hossain SMZ, Mohammed ME, Irfan MF, Haq B, Faruque MO, Razzak SA, Hossain MM (2020) Experimental study and parameters optimization of microalgae based heavy metals removal process using a hybrid response surface methodologycrow search algorithm. Sci Rep 10(1):1–15. https:// doi. org/ 10. 1038/ s41598- 020- 72236-8 | |
dc.relation.references | Sun J, Liu L, Yang F (2020) A WO3/PPy/ACF modified electrode in electrochemical system for simultaneous removal of heavy metal ion Cu2+ and organic acid. J Hazard Mater 394:122534. https:// doi. org/ 10. 1016/j. jhazm at. 2020. 122534 | |
dc.relation.references | Talukdar D, Jasrotia T, Sharma R, Jaglan S, Kumar R, Vats R, Kumar R, Mahnashi MH, Umar A (2020) Evaluation of novel indigenous fungal consortium for enhanced bioremediation of heavy metals from contaminated sites. Environ Technol Innov 20:101050. https:// doi. org/ 10. 1016/j. eti. 2020. 101050 | |
dc.relation.references | Tambat VS, Patel AK, Chen C-W, Raj T, Chang J-S, Singhania RR, Dong C-D (2023) A sustainable vanadium bioremediation strategy from aqueous media by two potential green microalgae. Environ Pollut 323:121247. https:// doi. org/ 10. 1016/j. envpol. 2023. 121247 | |
dc.relation.references | Tamizharasan S, Muralidharan R, Abirami N, Leelavathi H, Siva A, Kumarasamy A, Arulmozhi R (2023) Biomass derived carbon blended ion-exchange resins for the removal of toxic metal ions from waste water. Optik 283:170930. https:// doi. org/ 10. 1016/j. ijleo. 2023. 170930 | |
dc.relation.references | Tang X, Zheng H, Teng H, Sun Y, Guo J, Xie W, Yang Q, Chen W (2014) Chemical coagulation process for the removal of heavy metals from water: a review. Desalin Water Treat. https:// doi. org/ 10. 1080/ 19443 994. 2014. 977959 | |
dc.relation.references | Thangadurai D, Sangeetha J, Prasad R (2020) Nanotechnology for food, agriculture and environment. In: Springer (ed) Food processing. https:// doi. org/ 10. 1002/ 97811 18846 315. ch8 | |
dc.relation.references | Thatoi H, Das S, Mishra J, Prasad B (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manage 146:383–399. https:// doi. org/ 10. 1016/j. jenvm an. 2014. 07. 014 | |
dc.relation.references | Thomas P, Rumjit NP, George PJ, Lai CW, Tyagi P, Johan MR Bin, Saravanakumar Puratchiveeran M (2020) In: Preeti Tyagi, Mohd Rafie Bin Johan, Manickam Puratchiveeran Saravanakumar (eds) Remediation of heavy metal ions using nanomaterials sourced from wastewaters. Nanotechnology for food, agriculture, and environment, pp 255–296 | |
dc.relation.references | Vinayagam Y, V DR (2024) Mycosynthesis of TiO2 nanoparticles using Aspergillus penicillioides for toxic metal removal and photocatalytic applications. J Wat Process Eng 67:106279. https:// doi. org/ 10. 1016/j. jwpe. 2024. 106279 | |
dc.relation.references | Vu HHT, Gu S, Thriveni T, Khan MD, Tuan LQ, Ahn JW (2019) Sustainable treatment for sulfate and lead removal from battery wastewater. Sustainability 11(13):3497 | |
dc.relation.references | Wang CL, Ozuna SC, Clark DS, Keasling JD (2002) A deep-sea hydrothermal vent isolate, Pseudomonas aeruginosa CW961, requires thiosulfate for Cd2+ tolerance and precipitation. Biotech Lett 24(8):637–641. https:// doi. org/ 10. 1023/A: 10150 43324 584 | |
dc.relation.references | Wang T, Wang P, Pan L, He Z, Dai L, Wang L, Liu S, Jun SC, Lu B, Liang S, Zhou J (2023) Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement. Adv Energy Mater 13(5):2203523. https:// doi. org/ 10. 1002/ aenm. 20220 3523 | |
dc.relation.references | Xu X, Wang T, Sun M, Bai Y, Fu C, Zhang L, Xiaoyan H, Spencer H (2019) Management principles for heavy metal contaminated farmland based on ecological risk — a case study in the pilot area of Hunan province, China. Sci Total Environ 684:537–547. https:// doi. org/ 10. 1016/j. scito tenv. 2019. 05. 015 | |
dc.relation.references | Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359. https:// doi. org/ 10. 3389/ fpls. 2020. 00359 | |
dc.relation.references | Zhang Y, Duan X (2020) Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate. Water Sci Technol 81(6):1130–1136. https:// doi. org/ 10. 2166/ wst. 2020. 208 | |
dc.rights | Breve declaración de derechos de autor. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.source | Environmental Science and Pollution Research | |
dc.subject.lemb | Battery production | |
dc.subject.lemb | Environmental pollution | |
dc.subject.lemb | Bioaccumulation | |
dc.subject.lemb | Bioremediation | |
dc.subject.lemb | Biosorption | |
dc.subject.lemb | Phytoremediation | |
dc.subject.lemb | Sustainable technologies | |
dc.subject.lemb | Environmental sustainability | |
dc.subject.ocde | 1. Ciencias Naturales | |
dc.subject.ods | ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades | |
dc.subject.ods | ODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos | |
dc.subject.proposal | Battery effluents | |
dc.subject.proposal | Microorganism | |
dc.subject.proposal | Bioremediation | |
dc.subject.proposal | Nanomaterials | |
dc.subject.proposal | Heavy metals | |
dc.subject.proposal | Phytoremediation | |
dc.title | Biological approaches to mitigate heavy metal pollution from battery production effluents: advances, challenges, and perspectives | |
dc.type | Artículo de revista | |
dc.type.coar | http://purl.org/coar/resource_type/c_18cf | |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dcterms.audience | Comunidad académica y Comunidad Científica | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | f428bf31-0676-48a7-b388-35f7f51dbbfa | |
relation.isAuthorOfPublication | 5f6ba42b-2b79-4fee-9302-07addc317184 | |
relation.isAuthorOfPublication | 8ce90bb1-c5d7-4bdd-b27d-bbf948233d0d | |
relation.isAuthorOfPublication | 74ceb186-b60b-4210-9548-9a89e1a8f37b | |
relation.isAuthorOfPublication.latestForDiscovery | f428bf31-0676-48a7-b388-35f7f51dbbfa |