Publicación:
Biological approaches to mitigate heavy metal pollution from battery production effluents: advances, challenges, and perspectives

dc.contributor.authorMONROY-LICHT, ANDREA
dc.contributor.authorMartinez‑Burgos, Walter Jose
dc.contributor.authorDe Carvalho, Júlio Cesar
dc.contributor.authorCavali, Matheus
dc.contributor.authorLorenci Woiciechowski, Adenise
dc.contributor.authorGrace Karp, Susan,
dc.contributor.authorRicardo Soccol, Carlos
dc.contributor.authorAna C. De la Parra‑Guerra
dc.contributor.authorDe la parra, Ana Cristina
dc.contributor.authorPozzan, Roberta
dc.contributor.authorAcevedo Barrios, Rosa Leonor
dc.contributor.researchgroupGrupo de Investigación Estudios Químicos y Biológicos
dc.contributor.seedbedsSemillero de Investigación en Ciencias Ambientales
dc.date.accessioned2025-09-02T19:52:36Z
dc.date.available2025-09-02
dc.date.issued2025-07-18
dc.descriptionContiene ilustraciones, gráficos
dc.description.abstractBattery production generates effluents containing various pollutants, predominantly heavy metals such as lead (Pb), cadmium (Cd), nickel (Ni), copper (Cu), zinc (Zn), and chromium (Cr), which represent a serious risk to human health and the environment. Given their persistence, toxicity, and mobility in ecosystems and biota, heavy metals can bioaccumulate and, in some cases, enter the food chain. With this context in mind, this review presents emerging ioremediation technologies to treat effluents from battery production, focusing on biological methods such as biosorption, phytoremediation, and the use of microorganisms. Heavy metal removal mechanisms and conventional treatments are reviewed, with emphasis on biological approaches. Biosorption emerges as the most used strategy (54.4%) across organisms from different kingdoms. In addition, existing knowledge gaps in battery industry effluent management research are identified, proposing future directions that include the integration of sustainable technologies and the use of traditional knowledge of local communities. This approach seeks not only to mitigate the environmental impact of battery production but also to promote more responsible and equitable production practices, aligned with the principles of environmental justice and sustainability.
dc.description.researchareaMicrobiología y toxicología ambiental
dc.description.tableofcontentsTitulo Abstract Introduction Methodology Contenido Conclusion References
dc.description.technicalinfoNo Aplica
dc.format.extent35
dc.format.mimetypeapplication/pdf
dc.identifier.citationMonroy-Licht, A., Martinez-Burgos, W.J., de Carvalho, J.C. et al. Biological approaches to mitigate heavy metal pollution from battery production effluents: advances, challenges, and perspectives. Environ Sci Pollut Res (2025). https://doi.org/10.1007/s11356-025-36792-8
dc.identifier.otherhttps://doi.org/10.1007/s11356-025-36792-8
dc.identifier.urihttps://hdl.handle.net/20.500.12585/14185
dc.language.isoeng
dc.relation.referencesAbbas MN, Al-Tameemi IM, Hasan MB, Al-Madhhachi A-ST (2021) Chemical removal of cobalt and lithium in contaminated soils using promoted white eggshells with different catalysts. South Afr J Chem Eng 35:23–32. https:// doi. org/ 10. 1016/j. sajce. 2020. 11. 002
dc.relation.referencesAbbas S, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals. J Chem Sci Technol 3:74–102
dc.relation.referencesAbdel Maksoud MIA, Elgarahy AM, Farrell C, Al-Muhtaseb AH, Rooney DW, Osman AI (2020) Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord Chem Rev 403:213096. https:// doi. org/ 10. 1016/j. ccr. 2019. 213096
dc.relation.referencesAbinandan S, Subashchandrabose SR, Pannerselvan L, Venkateswarlu K, Megharaj M (2019) Potential of acid-tolerant microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, in heavy metal removal and biodiesel production at acidic pH. Biores Technol 278(January):9–16. https:// doi. org/ 10. 1016/j. biort ech. 2019. 01. 053
dc.relation.referencesAbo-Alkasem MI, Hassan NH, Abo Elsoud MM (2023) Microbial bioremediation as a tool for the removal of heavy metals. Bull Natl Res Cent 47(1):31. https:// doi. org/ 10. 1186/ s42269- 023- 01006-z
dc.relation.referencesAhemad M (2019) Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: paradigms and prospects. Arab J Chem 12(7):1365–1377. https:// doi. org/ 10. 1016/j. arabjc. 2014. 11. 020
dc.relation.referencesAhmad N, Mounsef JR, Tayeh JA, Lteif R (2020) Bioremediation of Ni, Al and Pb by the living cells of a resistant strain of microalga. Water Sci Technol 82(5):851–860. https:// doi. org/ 10. 2166/ wst. 2020. 381
dc.relation.referencesAhmad Sk. A, Khan MH, Khandker S, Sarwar AFM, Yasmin N, Faruquee MH, Yasmin R (2014) Blood lead levels and health problems of lead acid battery workers in Bangladesh. Sci World J 2014(1):974104. https:// doi. org/ 10. 1155/ 2014/ 974104
dc.relation.referencesAli H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals— concepts and applications. Chemosphere 91(7):869–881. https:// doi. org/ 10. 1016/j. chemo sphere. 2013. 01. 075
dc.relation.referencesAli S, Shah IA, Ahmad A, Nawab J, Huang H (2019) Ar/O2 plasma treatment of carbon nanotube membranes for enhanced removal of zinc from water and wastewater: a dynamic sorption-filtration process. Sci Total Environ 655:1270–1278. https:// doi. org/ 10. 1016/j. scito tenv. 2018. 11. 335
dc.relation.referencesAl-Jabri H, Das P, Khan S, Thaher M, Abdulquadir M (2021) Treatment of wastewaters by microalgae and the potential applications of the produced biomass—a review. Water (Switzerland) 13(1). https:// doi. org/ 10. 3390/ w1301 0027
dc.relation.referencesAlotaibi AS, Alhumairi AM, Ghabban H, Alenzi AM, Hamouda RA (2024) Simultaneous production of biofuel, and removal of heavy metals using marine alga Turbinaria turbinata as a feedstock in NEOM Region, Tabuk. Ecotoxicol Environ Saf 275:116224. https:// doi. org/ 10. 1016/j. ecoenv. 2024. 116224
dc.relation.referencesAmal Raj AR, Mylsamy P, Sivasankar V, Kumar BS, Omine K, Sunitha TG (2024) Heavy metal pollution of river water and ecofriendly remediation using potent microalgal species. Water Sci Eng 17(1):41–50. https:// doi. org/ 10. 1016/j. wse. 2023. 04. 00
dc.relation.referencesAmeen F, Alsarraf MJ, Abalkhail T, Stephenson SL (2024) Evaluation of resistance patterns and bioremoval efficiency of hydrocarbons and heavy metals by the mycobiome of petroleum refining wastewater in Jazan with assessment of molecular typing and cytotoxicity of Scedosporium apiospermum JAZ-20. Heliyon 10(12):e32954. https:// doi. org/ 10. 1016/j. heliy on. 2024. e32954
dc.relation.referencesAmeen FA, Hamdan AM, El-Naggar MY (2020) Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Sci Rep 10(1):1–11. https:// doi. org/ 10. 1038/ s41598- 019- 57210-3
dc.relation.referencesArunlertaree C, Kaewsomboon W, Kumsopa A, Pokethitiyook P, Panyawathanakit P (2007) Removal of lead from battery manufacturing wastewater by egg shell. Songklanakarin J Sci Technol 29(3):858–868
dc.relation.referencesAzimi A, Azari A, Rezakazemi M, Ansarpour M (2016) Removal of heavy metals from industrial wastewaters : a review. Chem- BioEng Rev 1:37–59. https:// doi. org/ 10. 1002/ cben. 20160 0010
dc.relation.referencesBaltazar MdosPG, Gracioso LH, Avanzi IR, Karolski B, Tenório JAS, do Nascimento CAO, Perpetuo EA (2019) Copper biosorption by Rhodococcus erythropolis isolated from the Sossego Mine – PA – Brazil. J Mater Res Technol 8(1):475– 483. https:// doi. org/ 10. 1016/j. jmrt. 2018. 04. 006
dc.relation.referencesBanerjee G, Pandey S, Ray AK, Kumar R (2015) Bioremediation of heavy metals by a novel bacterial strain Enterobacter cloacae and its antioxidant enzyme activity, flocculant production, and protein expression in presence of lead, cadmium, and nickel. Water Air Soil Pollut 226(91):1–9. https:// doi. org/ 10. 1007/ s11270- 015- 2359-9
dc.relation.referencesBarakat MA, Schmidt E (2010) Polymer-enhanced ultra filtration process for heavy metals removal from industrial wastewater. Des 256(1–3):90–93. https:// doi. org/ 10. 1016/j. desal. 2010. 02. 008
dc.relation.referencesBarba S, Villaseñor J, Rodrigo MA, Cañizares P (2021) Biostimulation versus bioaugmentation for the electro-bioremediation of 2,4-dichlorophenoxyacetic acid polluted soils. J Environ Manage 277:111424. https:// doi. org/ 10. 1016/j. jenvm an. 2020. 111424
dc.relation.referencesBashir A, Ahmad L, Sozia M, Taniya A, Mudasir M, Bhat A (2019) Removal of heavy metal ions from aqueous system by ion - exchange and biosorption methods. Environ Chem Lett 17(2):729–754. https:// doi. org/ 10. 1007/ s10311- 018- 00828-y
dc.relation.referencesBaskaran D, Byun H-S (2024) Current trend of polycyclic aromatic hydrocarbon bioremediation: mechanism, artificial mixed microbial strategy, machine learning, ground application, cost and policy implications. Chem Eng J 498:155334. https:// doi. org/ 10. 1016/j. cej. 2024. 155334
dc.relation.referencesBegum W, Rai S, Banerjee S, Bhattacharjee S, Mondal MH, Bhattarai A, Saha B (2022) A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Adv 12(15):9139– 9153. https:// doi. org/ 10. 1039/ D2RA0 0378C
dc.relation.referencesBergeson AR, Alper HS (2024) Advancing sustainable biotechnology through protein engineering. Trends Biochem Sci 49(11):955– 968. https:// doi. org/ 10. 1016/j. tibs. 2024. 07. 006
dc.relation.referencesBestawy EE, Helmy S, Hussien H, Fahmy M, Amer R (2013) Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl Water Sci 3(1):181–192. https:// doi. org/ 10. 1007/ s13201- 012- 0071-0
dc.relation.referencesBhattacharya A, Gupta A, Kaur A, Malik D (2014) Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. Appl Microbiol Biotechnol 98(23):9829–9841. https:// doi. org/ 10. 1007/ s00253- 014- 5910-5
dc.relation.referencesBhattacharya J, Dev S, Das B (2018) Chapter 11 - design of wastewater bioremediation plant and systems. In: Bhattacharya J, Dev S, Das B (eds) Low Cost Wastewater Bioremediation Technology. Butterworth-Heinemann, pp 265–313. https:// doi. org/ 10. 1016/ B978-0- 12- 812510- 6. 00011-5
dc.relation.referencesBiswas S, Jayaram S, Philip I, Balasubramanian B, Pappuswamy M, Barceló D, Chelliapan S, Kamyab H, Sarojini S, Vasseghian Y (2024) Appraisal of the potential of endophytic bacterium Bacillus amyloliquefaciens from Alternanthera philoxeroides: a triple approach to heavy metal bioremediation, diesel biodegradation, and biosurfactant production. J Environ Chem Eng 12(5):113454. https:// doi. org/ 10. 1016/j. jece. 2024. 113454
dc.relation.referencesBlanco-Vieites M, Suárez-Montes D, Delgado F, Álvarez-Gil M, Battez AH, Rodríguez E (2022) Removal of heavy metals and hydrocarbons by microalgae from wastewater in the steel industry. Algal Res 64:102700. https:// doi. org/ 10. 1016/j. algal. 2022. 102700
dc.relation.referencesBondarenko O, Rõlova T, Kahru A, Ivask A (2008) Bioavailability of Cd, Zn and Hg in soil to nine recombinant luminescent metal sensor bacteria. Sensors (Basel) 8:6899–6923. https:// doi. org/ 10. 3390/ s8116 899
dc.relation.referencesBora AJ, Dutta RK (2019) Journal of water process engineering removal of metals (Pb, Cd, Cu, Cr, Ni, and Co) from drinking water by oxidation-coagulation-absorption at optimized pH. J Water Process Eng 31:100839. https:// doi. org/ 10. 1016/j. jwpe. 2019. 100839
dc.relation.referencesBudi RMS, Rahardja BS, Masithah ED (2020) Potential concentration of heavy metal copper (Cu) and microalgae growth Spirulina plantesis in culture media. IOP Conf Ser Earth Environ Sci. https:// doi. org/ 10. 1088/ 1755- 1315/ 441/1/ 012147
dc.relation.referencesBuendía-González L, Orozco-Villafuerte J, Cruz-Sosa F, Barrera- Díaz CE, Vernon-Carter EJ (2010) Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresour Technol 101(15):5862–5867. https:// doi. org/ 10. 1016/j. biort ech. 2010. 03. 027
dc.relation.referencesBulgariu L, Gavrilescu M (2015) Bioremediation of heavy metals by microalgae. In: Handbook of marine microalgae: biotechnology advances, issue 3, pp 457–469. https:// doi. org/ 10. 1016/ B978-0- 12- 800776- 1. 00030-3
dc.relation.referencesButter B, Santander P, Pizarro GdelC, Oyarzún DP, Tasca F, Sánchez J (2021) Electrochemical reduction of Cr(VI) in the presence of sodium alginate and its application in water purification. J Environ Sci (China) 101:304–312. https:// doi. org/ 10. 1016/j. jes. 2020. 08. 033
dc.relation.referencesCallisaya MP, Fuentes DP, Braga VHA, Finzi-Quintão CM, Oliveira PV, Petri DFS (2024) Harnessing carboxymethyl cellulose and Moringa oleifera seed husks for sustainable treatment of a multimetal real waste. Environ Res 252:118970. https:// doi. org/ 10. 1016/j. envres. 2024. 118970
dc.relation.referencesChai WS, Tan WG, Halimatul Munawaroh HS, Gupta VK, Ho SH, Show PL (2021) Multifaceted roles of microalgae in the application of wastewater biotreatment: a review. Environ Pollut. https:// doi. org/ 10. 1016/j. envpol. 2020. 116236
dc.relation.referencesChan A, Salsali H, McBean E (2014) Heavy metal removal (copper and zinc) in secondary effluent from wastewater treatment plants by microalgae. ACS Sustain Chem Eng 2(2):130–137. https:// doi. org/ 10. 1021/ sc400 289z
dc.relation.referencesCharan K, Mandal J, Bhattacharyya P (2024) Application of autochthonous extremophilic Bacillus xiamenensis in remediation of groundwater- a sorption-based metal cleaning approach. Groundw Sustain Dev 24. https:// doi. org/ 10. 1016/j. gsd. 2023. 101063
dc.relation.referencesChauhan D, Sankararamakrishnan N (2008) Highly enhanced adsorption for decontamination of lead ions from battery wastewaters using chitosan functionalized with xanthate. Bioresour Technol 99(18):9021–9024. https:// doi. org/ 10. 1016/j. biort ech. 2008. 04. 024
dc.relation.referencesChauhan M, Solanki M, Nehra K (2017) Putative mechanism of cadmium bioremediation employed by resistant bacteria. Jordan J Biol Sci 10(2):101–107
dc.relation.referencesChellaiah ER (2018) Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: a minireview. Appl. Water Sci. 8:1–10. https:// doi. org/ 10. 9734/ ajsspn/ 2017/ 36868
dc.relation.referencesChen Q, Yao Y, Li X, Lu J, Zhou J, Huang Z (2018) Comparison of heavy metal removals from aqueous solutions by chemical Chen Q, Yao Y, Li X, Lu J, Zhou J, Huang Z (2018) Comparison of heavy metal removals from aqueous solutions by chemical
dc.relation.referencesChen S, Guo Y, Cai W, Huang Q (2024) Selective adsorption of oxidized yeast glucan for Pb2+: influencing factors, adsorption site and mechanism. Int J Biol Macromol 282:137074. https://d oi. org/ 10. 1016/j. ijbio mac. 2024. 137074
dc.relation.referencesChoumane R, Peulon S (2021) Development of an efficient electrochemical process for removing and separating soluble Pb (II) in aqueous solutions in presence of other heavy metals: studies of key parameters. Chem Eng J 130161. https:// doi. org/ 10. 1016/j. cej. 2021. 130161
dc.relation.referencesChug R, Mathur S, Kothari SL, Harish a, Gour VS (2021) Maximizing EPS production from Pseudomonas aeruginosa and its application in Cr and Ni sequestration. Biochem Biophys Rep 26:100972. https:// doi. org/ 10. 1016/j. bbrep. 2021. 100972
dc.relation.referencesClemens S (2001) Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation. Int J Occup Med Environ Health 14(3):235–239
dc.relation.referencesCollin MS, Venkatraman SK, Vijayakumar N, Kanimozhi V, Arbaaz SM, Stacey RGS, Anusha J, Choudhary R, Lvov V, Tovar GI, Senatov F, Koppala S, Swamiappan S (2022) Bioaccumulation of lead (Pb) and its effects on human: a review. Journal of Hazardous Materials Advances 7:100094. https:// doi. org/ 10. 1016/j. hazadv. 2022. 100094
dc.relation.referencesConcórdio-Reis P, Reis MAM, Freitas F (2020) Biosorption of heavy metals by the bacterial exopolysaccharide FucoPol. Appl Sci. https:// doi. org/ 10. 3390/ app10 196708
dc.relation.referencesDalCorso G, Fasani E, Manara A, Visioli G, Furini A (2019) Heavy metal pollutions: state of the art and innovation in phytoremediation. Int J Mol Sci. https:// doi. org/ 10. 3390/ ijms2 01434 12
dc.relation.referencesDas N, Vimala R, Karthika P (2008) Biosorption of heavy metals - an overview. Indian J Biotechnol 7(2):159–169
dc.relation.referencesDe la Parra-Guerra ACC, Truyol-Padilla J, García-Alzate C, Fuentes Gandara F (2025) Gender-based violence as a barrier to women rights towards socio- environmental sustainability. Glob J Environ Sci Manag 11(1). https:// doi. org/ 10. 22034/ gjesm. 2025. 01. 20
dc.relation.referencesDixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes, pp 2189–2212. https:// doi. org/ 10. 3390/ su702 2189
dc.relation.referencesDobrowolski R, Szcześ A, Czemierska M, Jarosz-Wikołazka A (2017) Studies of cadmium(II), lead(II), nickel(II), cobalt(II) and chromium(VI) sorption on extracellular polymeric substances produced by Rhodococcus opacus and Rhodococcus rhodochrous. Bioresour Technol 225:113–120. https:// doi. org/ 10. 1016/j. biort ech. 2016. 11. 040
dc.relation.referencesDusengemungu L, Kasali G, Gwanama C, Mubemba B (2021) Overview of fungal bioleaching of metals. Environ Adv 5:100083. https:// doi. org/ 10. 1016/j. envadv. 2021. 100083
dc.relation.referencesDwivedi S, Mishra A, Kumar A, Tripathi P, Dave R, Dixit G, Tiwari KK, Srivastava S, Shukla MK, Tripathi RD (2012) Bioremediation potential of genus Portulaca L. collected from industrial areas in Vadodara, Gujarat, India. Clean Technol Environ Policy 14(2):223–228. https:// doi. org/ 10. 1007/ s10098- 011- 0389-6
dc.relation.referencesEl-Sheekh MM, Farghl AA, Galal HR, Bayoumi HS (2016) Bioremediation of different types of polluted water using microalgae. Rendiconti Lincei 27(2):401–410. https:// doi. org/ 10. 1007/ s12210- 015- 0495-1
dc.relation.referencesEmenike CU, Jayanthi B, Agamuthu P, Fauziah SH (2018) Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environ Rev 26(2):156–168. https:// doi. org/ 10. 1139/ er- 2017- 0045
dc.relation.referencesFakhri Y, Bjørklund G, Bandpei AM, Chirumbolo S, Keramati H, Hosseini Pouya R, Asadi A, Amanidaz N, Sarafraz M, Sheikhmohammad A, Alipour M, Baninameh Z, Mohseni SM, Sarkhosh M, Ghasemi SM (2018) Concentrations of arsenic and lead in rice (Oryza sativa L.) in Iran: a systematic review and carcinogenic risk assessment. Food Chem Toxicol 113:267–277. https:// doi. org/ 10. 1016/j. fct. 2018. 01. 018
dc.relation.referencesFleischmann J, Hanicke M, Horetsky E, Ibrahim D, Jautelat S, Linder M, Schaufuss P, Torscht L, Van de Rijt A (2023) Battery 2030: resilient, sustainable, and circular. McKinsey & Company
dc.relation.referencesFolens K, Huysman S, Van Hulle S, Du Laing G (2017) Chemical and economic optimization of the coagulation-flocculation process for silver removal and recovery from industrial wastewater. Sep Purif Technol 179:145–151. https:// doi. org/ 10. 1016/j. seppur. 2017. 02. 013
dc.relation.referencesFomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14. https:// doi. org/ 10. 1016/j. biort ech. 2013. 12. 102
dc.relation.referencesFulekar MH, Sharma J, Tendulkar A (2012) Bioremediation of heavy metals using biostimulation in laboratory bioreactor. Environ Monit Assess 184(12):7299–7307. https:// doi. org/ 10. 1007/ s10661- 011- 2499-3
dc.relation.referencesFulke AB, Ratanpal S, Sonker S (2024) Understanding heavy metal toxicity: implications on human health, marine ecosystems and bioremediation strategies. Mar Pollut Bull 206:116707. https:// doi. org/ 10. 1016/j. marpo lbul. 2024. 116707
dc.relation.referencesGao L, Yan X (2016) Nanozymes : an emerging field bridging nanotechnology and biology. Sci China Life Sci 59(4):400–402. https:// doi. org/ 10. 1007/ s11427- 016- 5044-3
dc.relation.referencesGao X, Wei M, Zhang X, Xun Y, Duan M, Yang Z, Zhu M, Zhu Y, Zhuo R (2024) Copper removal from aqueous solutions by white rot fungus Pleurotus ostreatus GEMB-PO1 and its potential in co-remediation of copper and organic pollutants. Bioresour Technol 395:130337. https:// doi. org/ 10. 1016/j. biort ech. 2024. 130337
dc.relation.referencesGarzón JM, Rodríguez Miranda JP, Hernández Gómez C (2017) Aporte de la biorremediación para solucionar problemas de contaminación y su relación con el desarrollo sostenible. Universidad y Salud 19(2):309–318. https:// doi. org/ 10. 22267/ rus. 171902. 93
dc.relation.referencesGenchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A (2020) The effects of cadmium toxicity. Int J Environ Res Public Health. https:// doi. org/ 10. 3390/ ijerp h1711 3782
dc.relation.referencesGerhardt KE, Gerwing PD, Greenberg BM (2017) Opinion: taking phytoremediation from proven technology to accepted practice. Plant Sci 256:170–185. https:// doi. org/ 10. 1016/j. plant sci. 2016. 11. 016
dc.relation.referencesGhaed V, Salimi A, Attar R, Mirvakili A, Salimian J (2025) From waste to resource: evaluating microalgae for enhanced metal adsorption in oil and gas refinery effluents. J Environ Chem Eng 13(2):115844. https:// doi. org/ 10. 1016/j. jece. 2025. 115844
dc.relation.referencesGhorai S, Sinhamahpatra A, Sarkar A, Panda AB, Pal S (2012) Novel biodegradable nanocomposite based on XG-g-PAM/SiO2: application of an efficient adsorbent for Pb2+ ions from aqueous solution. Bioresour Technol 119:181–190. https:// doi. org/ 10. 1016/j. biort ech. 2012. 05. 063
dc.relation.referencesGola D, Dey P, Bhattacharya A, Mishra A, Malik A, Namburath M, Ahammad SZ (2016) Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresour Technol 218:388–396. https:// doi. org/ 10. 1016/j. biort ech. 2016. 06. 096
dc.relation.referencesGomathi T, Saranya M, Radha E, Vijayalakshmi K, Prasad PS, Sudha PN (2020) Bioremediation. In: Encyclopedia of marine biotechnology, pp 3139–3172. https:// doi. org/ 10. 1002/ 97811 19143 802. ch140
dc.relation.referencesGoodarzi N, Ashrafi-Peyman Z, Khani E, Moshfegh AZ (2023) Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts 13(7):1102. https:// doi. org/ 10. 3390/ catal 13071 102
dc.relation.referencesGottesfeld P, Pokhrel AK (2011) Review: lead exposure in battery manufacturing and recycling in developing countries and among children in nearby communities. J Occup Environ Hyg 8(9):520–532. https:// doi. org/ 10. 1080/ 15459 624. 2011. 601710
dc.relation.referencesGreipsson S (2011) Phytoremediation. Nature Education Knowledge 3(10):7
dc.relation.referencesGuerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465(1–2):190–198. https:// doi. org/ 10. 1016/ s0005- 2736(00) 00138-3
dc.relation.referencesGunatilake SK (2015) Methods of removing heavy metals from industrial wastewater. J Multidiscip Eng Sci Stud 1(1):12–18
dc.relation.referencesGuo W, Fu Z, Wang H, Liu S, Wu F, Giesy JP (2018) Removal of antimonate (Sb(V)) and antimonite (Sb(III)) from aqueous solutions by coagulation-flocculation-sedimentation (CFS): dependence on influencing factors and insights into removal mechanisms. Sci Total Environ 644:1277–1285. https:// doi. org/ 10. 1016/j. scito tenv. 2018. 07. 034
dc.relation.referencesGupta NK, Gupta A, Ramteke P, Sahoo H, Sengupta A (2019) Biosorption-a green method for the preconcentration of rare earth elements (REEs) from waste solutions: a review. J Mol Liq 274:148–164. https:// doi. org/ 10. 1016/j. molliq. 2018. 10. 134
dc.relation.referencesGupta P, Diwan B (2017) Bacterial exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep (Amst) 13:58–71. https:// doi. org/ 10. 1016/j. btre. 2016. 12. 006
dc.relation.referencesGusti Wibowo Y, Tyaz Nugraha A, Rohman A (2023) Phytoremediation of several wastewater sources using Pistia stratiotes and Eichhornia crassipes in Indonesia. Environ Nanotechnol, Monit Manag 20:100781. https:// doi. org/ 10. 1016/j. enmm. 2023. 100781
dc.relation.referencesGuzzi G, Ronchi A, Pigatto P (2021) Toxic effects of mercury in humans and mammals. Chemosphere 263:127990. https:// doi. org/ 10. 1016/j. chemo sphere. 2020. 127990
dc.relation.referencesHaferburg G, Kothe E (2007) Microbes and metals: interactions in the environment. J Basic Microbiol 47(6):453–467. https:// doi. org/ 10. 1002/ jobm. 20070 0275
dc.relation.referencesHaidar Z, Fatema K, Shoily SS, Sajib AA (2023) Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicol Rep 10:554–570. https:// doi. org/ 10. 1016/j. toxrep. 2023. 04. 010
dc.relation.referencesHarper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K, Gaines L, Anderson P (2019) Recycling lithium-ion batteries from electric vehicles. Nature 575(7781):75–86. https:// doi. org/ 10. 1038/ s41586- 019- 1682-5
dc.relation.referencesHasin AAL, Gurman SJ, Murphy LM, Perry A, Gardiner PHE (2010) Remediation of chromium (VI) by a methane-oxidizing bacterium. Environ Sci Technol 44(1):400–405
dc.relation.referencesHassan SW, El-Kassas HY (2012) Biosorption of cadmium from aqueous solutions using a local fungus Aspergillus cristatus (Glaucus group). Afr J Biotech 11(9):2276–2286
dc.relation.referencesHossein M, Hadi M, Jamali A (2017) A novel polylysine – resorcinol base g -alumina nanotube hybrid material for effective adsorption/ preconcentration of cadmium from various matrices. J Ind Eng Chem 46:165–174. https:// doi. org/ 10. 1016/j. jiec. 2016. 10. 027
dc.relation.referencesHosseini SP, Mousavi SM, Jafari A (2024) Exploring biosynthesis strategies to boost the yield of exopolysaccharide-protein blend from Bacillus arachidis SY8(T), an isolated native strain, as a potent adsorbent for heavy metals removal. Int J Biol Macromol 271:132634. https:// doi. org/ 10. 1016/j. ijbio mac. 2024. 132634
dc.relation.referencesIbrahim HS, Ammar NS, Soylak M, Ibrahim M (2012) Removal of Cd(II) and Pb(II) from aqueous solution using dried water hyacinth as a biosorbent. Spectrochim Acta A Mol Biomol Spectrosc 96:413–420. https:// doi. org/ 10. 1016/j. saa. 2012. 05. 039
dc.relation.referencesIgiri BE, Okoduwa SIR, Idoko GO, Akabuogu EP, Adeyi A, Ejiogu IK (2018) Toxicity and bioremediation of heavy metalscontaminated ecosystem from tannery wastewater: a review. J Toxicol 7:609–616. https:// doi. org/ 10. 1007/ 978-3- 319- 00557- 7_ 50
dc.relation.referencesImron MF, Setiawan W, Putranto TWC, Abdullah SRS, Kurniawan SB (2024) Biosorption of chromium by live and dead cells of Bacillus nitratireducens isolated from textile effluent. Chemosphere 359:142389. https:// doi. org/ 10. 1016/j. chemo sphere. 2024. 142389
dc.relation.referencesInstitute for Health Metrics Evaluation (2020) GBD Compare data visualization-IHM
dc.relation.referencesInternational-Lead-Association (2015) Lead production statistics. Angewandte Chemie International Edition 6(11):951–952. Retrieved from: https:// ila- lead. org/ resou rces/ lead- produ ctionstati stics/. Accessed: 10 Jun 2021
dc.relation.referencesIşıldar A, van Hullebusch ED, Lenz M, Du Laing G, Marra A, Cesaro A, Panda S, Akcil A, Kucuker MA, Kuchta K (2019) Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – a review. J Hazard Mater 362:467–481. https:// doi. org/ 10. 1016/j. jhazm at. 2018. 08. 050
dc.relation.referencesIvask A, Suarez E, Patel T, Boren D, Ji Z, Holden P, Godwin H (2012) Genome-wide bacterial toxicity screening uncovers the mechanisms of toxicity of a cationic polystyrene nanomaterial. Environmental Science & Technology 46(4):2398–2405. https:// doi. org/ 10. 1021/ es203 087m
dc.relation.referencesIyer M, Anand U, Thiruvenkataswamy S, Babu HWS, Narayanasamy A, Prajapati VK, Tiwari CK, Gopalakrishnan AV, Bontempi E, Sonne C, Barceló D, Vellingiri B (2023) A review of chromium (Cr) epigenetic toxicity and health hazards. Sci Total Environ 882:163483. https:// doi. org/ 10. 1016/j. scito tenv. 2023. 163483
dc.relation.referencesJaafari J, Yaghmaeian K (2019) Optimization of heavy metal biosorption onto freshwater algae (Chlorella coloniales) using response surface methodology (RSM). Chemosphere 217:447–455. https:// doi. org/ 10. 1016/j. chemo sphere. 2018. 10. 205
dc.relation.referencesJacob JM, Karthik C, Saratale RG, Kumar SS, Prabakar D, Kadirvelu K, Pugazhendhi A (2018) Biological approaches to tackle heavy metal pollution: a survey of literature. J Environ Manage 217:56–70. https:// doi. org/ 10. 1016/j. jenvm an. 2018. 03. 077
dc.relation.referencesJavaid A, Bajwa R (2007) Biosorption of Cr (III) ions from tannery wastewater by Pleurotus ostreatus. Mycopath 5:71–79
dc.relation.referencesJi S, Cherry CR, Zhou W, Sawhney R, Wu Y, Cai S, Wang S, Marshall JD (2015) Environmental justice aspects of exposure to PM2.5 emissions from electric vehicle use in China. Environ Sci Technol 49(24):13912–13920. https:// doi. org/ 10. 1021/ acs. est. 5b049 27
dc.relation.referencesJiang Z, Jiang L, Zhang L, Su M, Tian D, Wang T, Sun Y, Nong Y, Hu S, Wang S, Li Z (2020) Contrasting the Pb (II) and Cd (II) tolerance of Enterobacter sp. via its cellular stress responses. Environ Microbiol 22(4):1507–1516. https:// doi. org/ 10. 1111/ 1462- 2920. 14719
dc.relation.referencesJones PK, Stimming U, Lee AA (2022) Impedance-based forecasting of lithium-ion battery performance amid uneven usage. Nat Commun 13(1):4806. https:// doi. org/ 10. 1038/ s41467- 022- 32422-w
dc.relation.referencesKadam A, Saratale RG, Shinde S, Yang J, Hwang K, Mistry B, Saratale GD, Lone S, Kim D-Y, Sung J-S, Ghodake G (2019) Adsorptive remediation of cobalt oxide nanoparticles by magnetized α-cellulose fibers from waste paper biomass. Bioresour Technol 273:386–393. https:// doi. org/ 10. 1016/j. biort ech. 2018. 11. 041
dc.relation.referencesKalve S, Sarangi BK, Pandey RA, Chakrabarti T (2011) Arsenic and chromium hyperaccumulation by an ecotype of Pteris vittata – prospective for phytoextraction from contaminated water and soil. Curr Sci 100(6):888–894
dc.relation.referencesKang CH, Kwon YJ, So JS (2016) Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng 89:64–69. https:// doi. org/ 10. 1016/j. ecole ng. 2016. 01. 023
dc.relation.referencesKang SH, Singh S, Kim J, Lee W, Mulchandani A, Chen W (2007) Bacteria metabolically engineered for enhanced phytochelatin production and cadmium accumulation †. Appl Environ Microbiol 73(19):6317–6320. https:// doi. org/ 10. 1128/ AEM. 01237- 07
dc.relation.referencesKarnwal A (2024) Unveiling the promise of biosorption for heavy metal removal from water sources. Desalin Water Treat 319:100523. https:// doi. org/ 10. 1016/j. dwt. 2024. 100523
dc.relation.referencesKarnwal A, Kumar G, Din Mahmoud A. El, Dutta J, Singh R, Mohammad Said Al-Tawaha AR, Malik T (2025) Eco-engineered remediation: microbial and rhizosphere-based strategies for heavy metal detoxification. Curr Res Biotechnol 9:100297. https:// doi. org/ 10. 1016/j. crbiot. 2025. 100297
dc.relation.referencesKhan MU, Malik RN, Muhammad S (2013) Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere 93(10):2230–2238. https:// doi. org/ 10. 1016/j. chemo sphere. 2013. 07. 067
dc.relation.referencesKim IH, Choi JH, Joo JO, Kim YK, Choi JW, Oh BK (2015) Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. J Microbiol Biotechnol 25(9):1542– 1546. https:// doi. org/ 10. 4014/ jmb. 1504. 04067
dc.relation.referencesKiray E, Er C, Kariptas E, Ciftci H (2017) Biosorption and separation/ preconcentration of lead and nickel on Rhodococcus ruber biomass. Fresenius Environ Bull 25(12):7740–7749
dc.relation.referencesKulkarni SJ, Dhokpande SR, Kaware JP (2014) A review on studies on effect of heavy metals on man and environment. Int J Res Appl Sci Eng Technol 2:227–229
dc.relation.referencesKumar D, Kumar D, Singh Y, Hadi S (2017) Preparation of CuO nanoparticles using Tamarindus indica pulp extract for removal of As (III): optimization of adsorption process by ANN-GA. J Environ Chem Eng 5(1):1302–1318. https:// doi. org/ 10. 1016/j. jece. 2017. 01. 046
dc.relation.referencesKumar N, Hans S, Verma R, Srivastava A (2020) Acclimatization of microalgae Arthrospira platensis for treatment of heavy metals in Yamuna River. Water Sci Eng 13(3):214–222. https:// doi. org/ 10. 1016/j. wse. 2020. 09. 005
dc.relation.referencesKumar N, Kumar S, Bauddh K, Dwivedi N, Shukla P, Singh DP, Barman SC (2015) Toxicity assessment and accumulation of metals in radish irrigated with battery manufacturing industry effluent. Int J Veg Sci 21(4):373–385. https:// doi. org/ 10. 1080/ 19315 260. 2014. 880771
dc.relation.referencesKumar RR, Congeevaram S, Thamaraiselvi K (2011) Evaluation of isolated fungal strain from e-waste recycling facility for effective sorption of toxic heavy metal Pb (II) ions and fungal protein molecular characterization- a mycoremediation approach. Asian J Exp Biol Sci 2:342–347
dc.relation.referencesKumar S, Rahman Md. A., Islam Md. R., Hashem Md. A., Rahman MM (2022) Lead and other elements-based pollution in soil, crops and water near a lead-acid battery recycling factory in Bangladesh. Chemosphere 290:133288. https:// doi. org/ 10. 1016/j. chemo sphere. 2021. 133288
dc.relation.referencesLee KM, Abdullah AH (2015) Synthesis and characterization of zinc oxide/maghemite nanocomposites: influence of heat treatment on photocatalytic degradation of 2,4-dichlorophenoxyacetic acid. Mater Sci Semicond Process 30:298–306. https:// doi. org/ 10. 1016/j. mssp. 2014. 10. 017
dc.relation.referencesLeong YK, Chang JS (2020) Bioremediation of heavy metals using microalgae: recent advances and mechanisms. Bioresour Technol 303(December 2019). https:// doi. org/ 10. 1016/j. biort ech. 2020. 122886
dc.relation.referencesLi JT, Liao B, Lan CY, Ye ZH, Baker AJM, Shu WS (2010) Cadmium tolerance and accumulation in cultivars of a high-biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction. J Environ Qual 39(4):1262–1268. https:// doi. org/ 10. 2134/ jeq20 09. 0195
dc.relation.referencesLi S, Zhao B, Jin M, Hu L, Zhong H, He Z (2020) A comprehensive survey on the horizontal and vertical distribution of heavy metals and microorganisms in soils of a Pb/Zn smelter. J Hazard Mater 400:123255. https:// doi. org/ 10. 1016/j. jhazm at. 2020. 123255
dc.relation.referencesLu J, Xiong R, Tian J, Wang C, Sun F (2023) Deep learning to estimate lithium-ion battery state of health without additional degradation experiments. Nat Commun 14(1):2760. https:// doi. org/ 10. 1038/ s41467- 023- 38458-w
dc.relation.referencesMacchi G, Pagano M, Santori M, Tiravanti G (1993) Battery industry wastewater: Pb removal and produced sludge. Water Res 27(10):1511–1518. https:// doi. org/ 10. 1016/ 0043- 1354(93) 90095-Y
dc.relation.referencesMachado MD, Soares EV, Soares HMVM (2010) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J Hazard Mater 180(1–3):347–353. https:// doi. org/ 10. 1016/j. jhazm at. 2010. 04. 037
dc.relation.referencesMahale M, Samson R, Dharne M, Kodam K (2024) Harnessing the potential of Achromobacter sp. M1 to remediate heavy metals from wastewater: genomic insights and environmental applications. J Hazard Mater 480:136125. https:// doi. org/ 10. 1016/j. jhazm at. 2024. 136125
dc.relation.referencesMachado MD, Soares EV, Soares HMVM (2010) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J Hazard Mater 180(1–3):347–353. https:// doi. org/ 10. 1016/j. jhazm at. 2010. 04. 037
dc.relation.referencesMahale M, Samson R, Dharne M, Kodam K (2024) Harnessing the potential of Achromobacter sp. M1 to remediate heavy metals from wastewater: genomic insights and environmental applications. J Hazard Mater 480:136125. https:// doi. org/ 10. 1016/j. jhazm at. 2024. 136125
dc.relation.referencesMakhanya BN, Nyandeni N, Ndulini SF, Mthembu MS (2021) Application of green microalgae biofilms for heavy metals removal from mine effluent. Physics and Chemistry of the Earth, Parts A/B/C 124:103079. https:// doi. org/ 10. 1016/j. pce. 2021. 103079
dc.relation.referencesManzoor J, Sharma M, Wani KA (2018) Heavy metals in vegetables and their impact on the nutrient quality of vegetables: a review. J Plant Nutr 41(13):1744–1763. https:// doi. org/ 10. 1080/ 01904 167. 2018. 14623 82
dc.relation.referencesMarkets-and-Markets. (2019). Retrieved from: https:// www. marke tsand marke ts. com/ Market- Repor ts/ elect ric- vehic le- market- 20937 1461. html? gclid= Cj0KC QjwkZ iFBhD 9ARIs AGxFX 8Bia8 G0Sml RThUH q_- FpeWR QxEUN ijBZd NDD9O fFimv TaF32 Fn3b9 UaAht LEALw_ wcB. Accessed: 20 May 2021
dc.relation.referencesMartínez-Quiroz M, López-Maldonado EA, Ochoa-Terán A, Oropeza- Guzman MT, Pina-Luis GE, Zeferino-Ramírez J (2017) Innovative uses of carbamoyl benzoic acids in coagulation-flocculation’s processes of wastewater. Chem Eng J 307:981–988. https:// doi. org/ 10. 1016/j. cej. 2016. 09. 011
dc.relation.referencesMassoud R, Hadiani MR, Hamzehlou P, Khosravi-Darani K (2019) Bioremediation of heavy metals in food industry: application of Saccharomyces cerevisiae. Electron J Biotechnol 37:56–60. https:// doi. org/ 10. 1016/j. ejbt. 2018. 11. 003
dc.relation.referencesMercogliano R, Avio CG, Regoli F, Anastasio A, Colavita G, Santonicola S (2020) Occurrence of microplastics in commercial seafood under the perspective of the human food chain. A review. J Agric Food Chem 68(19):5296–5301. https:// doi. org/ 10. 1021/ acs. jafc. 0c012 09
dc.relation.referencesMesjasz-Przybylowicz J (2004) Uptake of cadmium, lead, nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Cracov Bot 46:75–85
dc.relation.referencesMir IS, Riaz A, Roy JS, Fréchette J, Morency S, Ponce Gomes O, Dumée LF, Greener J, Messaddeq Y (2024) Removal of cadmium and chromium heavy metals from aqueous medium using composite bacterial cellulose membrane. Chem Eng J 490:151665. https:// doi. org/ 10. 1016/j. cej. 2024. 151665
dc.relation.referencesMire CE, Tourjee Ja, Brien WFO, Ramanujachary KV, Hecht GB (2004) Lead precipitation by Vibrio harveyi. Appl Environ Microbiol 70(2):855–864. https:// doi. org/ 10. 1128/ AEM. 70.2. 855
dc.relation.referencesMonroy-Licht A (2022) Effect of phosphate on arsenic species uptake in plants under hydroponic conditions. J Plant Res. https:// doi. org/ 10. 1007/ s10265- 022- 01381-0
dc.relation.referencesMonroy-Licht A, Carranza-Lopez L, De la Parra-Guerra AC, Acevedo- Barrios R (2024) Unlocking the potential of Eichhornia crassipes for wastewater treatment: phytoremediation of aquatic pollutants, a strategy for advancing Sustainable Development Goal-06 clean water. Environ Sci Pollut Res 31(31):43561–43582. https:// doi. org/ 10. 1007/ s11356- 024- 33698-9
dc.relation.referencesNivetha N, Srivarshine B, Sowmya B, Rajendiran M, Saravanan P, Rajeshkannan R, Rajasimman M, Pham THT, Shanmugam V, Dragoi E-N (2023) A comprehensive review on bio-stimulation and bio-enhancement towards remediation of heavy metals degeneration. Chemosphere 312:137099. https:// doi. org/ 10. 1016/j. chemo sphere. 2022. 137099
dc.relation.referencesOladimeji TE, Oyedemi M, Emetere ME, Agboola O, Adeoye JB, Odunlami OA (2024) Review on the impact of heavy metals from industrial wastewater effluent and removal technologies. Heliyon. https:// doi. org/ 10. 1016/j. heliy on. 2024. e40370
dc.relation.referencesOmokhagbor Adams G, Tawari Fufeyin P, Eruke Okoro S, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmention: a review. Int J Environ Bioremediation Biodegrad 3(1):28–39. https:// doi. org/ 10. 12691/ ijebb-3- 1-5
dc.relation.referencesOrellana R, Cumsille A, Piña-Gangas P, Rojas C, Arancibia A, Donghi S, Stuardo C, Cabrera P, Arancibia G, Cárdenas F, Salazar F, González M, Santis P, Abarca-Hurtado J, Mejías M, Seeger M (2022) Economic evaluation of bioremediation of hydrocarboncontaminated urban soils in Chile. Sustainability 14(19):11854
dc.relation.referencesPage MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McKenzie JE et al (2021) PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ 372:n160. https:// doi. org/ 10. 1136/ bmj. n160
dc.relation.referencesPanda JR, Sen S, Sarkar P (2022) Chapter 13 - bioremediation of heavy metal pollutants in contaminated environment: principle, advantages, limitations, and future. In: Kapoor RT, Shah MP (eds) Synergistic approaches for bioremediation of environmental pollutants : recent advances and challenges. Academic Press, pp 263–272. https:// doi. org/ 10. 1016/ B978-0- 323- 91860-2. 00019-1
dc.relation.referencesParvathi K, Nagendran R, Nareshkumar R (2007) Lead biosorption onto waste beer yeast by-product, a means to decontaminate effluent generated from battery manufacturing industry. Electron J Biotechnol. https:// doi. org/ 10. 2225/ vol10- issue1- fullt ext- 13
dc.relation.referencesPieper D, Santos VM, Golyshin P (2004) Genomic and mechanistic insights into the biodegradation of organic pollutants. Curr Opin Biotechnol 15:215–224. https:// doi. org/ 10. 1016/j. copbio. 2004. 03. 008
dc.relation.referencesPoolachira S, Velmurugan S (2023) Graphene oxide/hydrotalcite modified polyethersulfone nanohybrid membrane for the treatment of lead ion from battery industrial effluent. Chin J Chem Eng 60:253–261. https:// doi. org/ 10. 1016/j. cjche. 2023. 01. 021
dc.relation.referencesPoonam Bharti SK, Kumar N (2018) Kinetic study of lead (Pb2+) removal from battery manufacturing wastewater using bagasse biochar as biosorbent. Appl Water Sci 8(4):119. https:// doi. org/ 10. 1007/ s13201- 018- 0765-z
dc.relation.referencesPranudta A, Chanthapon N, Kidkhunthod P, El-Moselhy MM, Nguyen TT, Padungthon S (2021) Selective removal of Pb from lead-acid battery wastewater using hybrid gel cation exchanger loaded with hydrated iron oxide nanoparticles: fabrication, characterization, and pilot-scale validation. J Environ Chem Eng 9(5):106282. https:// doi. org/ 10. 1016/j. jece. 2021. 106282
dc.relation.referencesRada S, Unguresan ML, Bolundut L, Rada M, Vermesan H, Pica M, Culea E (2016) Structural and electrochemical investigations of the electrodes obtained by recycling of lead acid batteries. J Electroanal Chem 780:187–196. https://d oi. org/ 10. 1016/j. jelec hem. 2016. 09. 025
dc.relation.referencesRaj K, Sardar UR, Bhargavi E, Devi I, Bhunia B, Tiwari ON (2018) Advances in exopolysaccharides based bioremediation of heavy metals in soil and water: a critical review. Carbohydr Polym 199:353–364. https:// doi. org/ 10. 1016/j. carbp ol. 2018. 07. 037
dc.relation.referencesRamírez Calderón OA, Abdeldayem OM, Pugazhendhi A, Rene ER (2020) Current updates and perspectives of biosorption technology: an alternative for the removal of heavy metals from wastewater. Curr Pollut Rep 6(1):8–27. https:// doi. org/ 10. 1007/ s40726- 020- 00135-7
dc.relation.referencesRao MA, Scelza R, Scotti R, Gianfreda L (2010) Role of enzymes in the remediation of polluted environments. J Soil Sci Plant Nutr 10(3):333–353
dc.relation.referencesRatul AK, Hassan M, Uddin MK, Sultana MS, Akbor MA, Ahsan MA (2018) Potential health risk of heavy metals accumulation in vegetables irrigated with polluted river water. Int Food Res J 25:329–338
dc.relation.referencesRoy D, Neogi S, De S (2021) Adsorptive removal of heavy metals from battery industry effluent using MOF incorporated polymeric beads: a combined experimental and modeling approach. J Hazard Mater 403(August 2020). https:// doi. org/ 10. 1016/j. jhazm at. 2020. 123624
dc.relation.referencesRoy PM, Sawant HH, Shelar PP, Sarode PU, Gawande SH (2024) Battery health management—A perspective of design, optimization, manufacturing, fault detection, and recycling. Energy Storage Saving 3(3):190–208. https:// doi. org/ 10. 1016/j. enss. 2024. 04. 001
dc.relation.referencesRycewicz-borecki M, Mclean JE, Dupont RR (2016) Bioaccumulation of copper, lead, and zinc in six macrophyte species grown in simulated stormwater bioretention systems 166:267–275. https:// doi. org/ 10. 1016/j. jenvm an. 2015. 10. 019
dc.relation.referencesSahu Ranjeev. K., Naraian R, Chandra V (2007) Accumulation of metals in naturally grown weeds (aquatic macrophytes) grown on an industrial effluent channel. CLEAN Soil Air Water 35(3):261– 265. https:// doi. org/ 10. 1002/ clen. 20070 0001
dc.relation.referencesSakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. CLEAN Soil Air Water 39(8):735–741. https:// doi. org/ 10. 1002/ clen. 20100 0488
dc.relation.referencesSaleh TA, Mustaqeem M, Khaled M (2022) Water treatment technologies in removing heavy metal ions from wastewater: a review. Environ Nanotechnol Monit Manag 17:100617. https:// doi. org/ 10. 1016/j. enmm. 2021. 100617
dc.relation.referencesSandeep G, Vijayalatha KR, Anitha T (2019) Heavy metals and its impact in vegetable crops. Int J Chem Stud 7(1):1612–1621
dc.relation.referencesSaravanakumar K, De Silva S, Santosh SS, Sathiyaseelan A, Ganeshalingam A, Jamla M, Sankaranarayanan A, Veeraraghavan VP, MubarakAli D, Lee J, Thiripuranathar G, Wang M-H (2022) Impact of industrial effluents on the environment and human health and their remediation using MOFs-based hybrid membrane filtration techniques. Chemosphere 307:135593. https:// doi. org/ 10. 1016/j. chemo sphere. 2022. 135593
dc.relation.referencesSfakianakis DG, Renieri E, Kentouri M, Tsatsakis AM (2015) Effect of heavy metals on fish larvae deformities: a review. Environ Res 137:246–255. https:// doi. org/ 10. 1016/j. envres. 2014. 12. 014
dc.relation.referencesShah M (2014) Environmental bioremediation: a low cost nature’s natural biotechnology for environmental clean-up. J Pet Environ Biotechnol 5(191):1–12
dc.relation.referencesSharma A, Shiwang J, Lee A, Peng W (2023a) Equity implications of electric vehicles: a systematic review on the spatial distribution of emissions, air pollution and health impacts. Environ Res Lett 18(5):053001. https:// doi. org/ 10. 1088/ 1748- 9326/ acc87c
dc.relation.referencesSharma KR, Giri R, Sharma RK (2023b) Efficient bioremediation of metal containing industrial wastewater using white rot fungi. Int J Environ Sci Technol 20(1):943–950. https:// doi. org/ 10. 1007/ s13762- 022- 03914-5
dc.relation.referencesSharma PK, Balkwill DL, Frenkel A, Vairavamurthy MA (2000) A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide.Appl Environ Microbiol 66(7):3083–3087. https:// doi. org/ 10. 1128/ AEM. 66.7. 3083- 3087. 2000
dc.relation.referencesSimonin M, Richaume A (2015) Impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: a review. Environ Sci Pollut Res 22(18):13710–13723. https:// doi. org/ 10. 1007/ s11356- 015- 4171-x
dc.relation.referencesSingh J, Ali A, Prakash V (2014) Removal of lead (II) from synthetic and batteries wastewater using agricultural residues in batch/column mode. Int J Environ Sci Technol 11(6):1759–1770. https:// doi. org/ 10. 1007/ s13762- 013- 0326-9
dc.relation.referencesSlattery M, Kendall A, Helal N, Whittaker ML (2023) What do frontline communities want to know about lithium extraction? Identifying research areas to support environmental justice in Lithium Valley, California. Energy Res Soc Sci 99:103043. https:// doi. org/ 10. 1016/j. erss. 2023. 103043
dc.relation.referencesSong Y, Ruan P, Mao C, Chang Y, Wang L, Dai L, Zhou P, Lu B, Zhou J, He Z (2022) Metal–organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett 14(1):218. https:// doi. org/ 10. 1007/ s40820- 022- 00960-z
dc.relation.referencesSoudani A, Gholami A, Roozbahani MM, Sabzalipour S, Mojiri A (2024) Cyperus longus to bioremediate heavy metals in aqueous solutions. Green Anal Chem 11:100147. https:// doi. org/ 10. 1016/j. greeac. 2024. 100147
dc.relation.referencesSreedevi PR, Suresh K, Jiang G (2022) Bacterial bioremediation of heavy metals in wastewater: a review of processes and applications. J Water Process Eng 48:102884. https://d oi.o rg/1 0.1 016/j. jwpe. 2022. 102884
dc.relation.referencesSrishti S, Raj SS, Vani B, Atkar A, Sridhar S, Madhu Mala M (2025) Enrichment of lithium ions for battery application by electrolysis through a nanoporous membrane. J Power Sources 626:235748. https:// doi. org/ 10. 1016/j. jpows our. 2024. 235748
dc.relation.referencesStrauss ML, Diaz LA, McNally J, Klaehn J, Lister TE (2021) Separation of cobalt, nickel, and manganese in leach solutions of waste lithium-ion batteries using Dowex M4195 ion exchange resin. Hydrometallurgy 206:105757. https:// doi. org/ 10. 1016/j. hydro met. 2021. 105757
dc.relation.referencesSu C, Geng Y, van Ewijk S, Borrion A, Zhang C (2025) Uncovering the evolution of the global nickel cycle and trade networks. Resour Conserv Recycl 215:108164. https:// doi. org/ 10. 1016/j. resco nrec. 2025. 108164
dc.relation.referencesSudhakar MS, Aggarwal A, Sah MK (2020) Engineering biomaterials for the bioremediation : advances in nanotechnological approaches for heavy metals removal from natural resources. In: Emerging Technologies in Environmental Bioremediation. INC. https:// doi. org/ 10. 1016/ B978-0- 12- 819860- 5. 00014-6
dc.relation.referencesSultana N, Hossain SMZ, Mohammed ME, Irfan MF, Haq B, Faruque MO, Razzak SA, Hossain MM (2020) Experimental study and parameters optimization of microalgae based heavy metals removal process using a hybrid response surface methodologycrow search algorithm. Sci Rep 10(1):1–15. https:// doi. org/ 10. 1038/ s41598- 020- 72236-8
dc.relation.referencesSun J, Liu L, Yang F (2020) A WO3/PPy/ACF modified electrode in electrochemical system for simultaneous removal of heavy metal ion Cu2+ and organic acid. J Hazard Mater 394:122534. https:// doi. org/ 10. 1016/j. jhazm at. 2020. 122534
dc.relation.referencesTalukdar D, Jasrotia T, Sharma R, Jaglan S, Kumar R, Vats R, Kumar R, Mahnashi MH, Umar A (2020) Evaluation of novel indigenous fungal consortium for enhanced bioremediation of heavy metals from contaminated sites. Environ Technol Innov 20:101050. https:// doi. org/ 10. 1016/j. eti. 2020. 101050
dc.relation.referencesTambat VS, Patel AK, Chen C-W, Raj T, Chang J-S, Singhania RR, Dong C-D (2023) A sustainable vanadium bioremediation strategy from aqueous media by two potential green microalgae. Environ Pollut 323:121247. https:// doi. org/ 10. 1016/j. envpol. 2023. 121247
dc.relation.referencesTamizharasan S, Muralidharan R, Abirami N, Leelavathi H, Siva A, Kumarasamy A, Arulmozhi R (2023) Biomass derived carbon blended ion-exchange resins for the removal of toxic metal ions from waste water. Optik 283:170930. https:// doi. org/ 10. 1016/j. ijleo. 2023. 170930
dc.relation.referencesTang X, Zheng H, Teng H, Sun Y, Guo J, Xie W, Yang Q, Chen W (2014) Chemical coagulation process for the removal of heavy metals from water: a review. Desalin Water Treat. https:// doi. org/ 10. 1080/ 19443 994. 2014. 977959
dc.relation.referencesThangadurai D, Sangeetha J, Prasad R (2020) Nanotechnology for food, agriculture and environment. In: Springer (ed) Food processing. https:// doi. org/ 10. 1002/ 97811 18846 315. ch8
dc.relation.referencesThatoi H, Das S, Mishra J, Prasad B (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manage 146:383–399. https:// doi. org/ 10. 1016/j. jenvm an. 2014. 07. 014
dc.relation.referencesThomas P, Rumjit NP, George PJ, Lai CW, Tyagi P, Johan MR Bin, Saravanakumar Puratchiveeran M (2020) In: Preeti Tyagi, Mohd Rafie Bin Johan, Manickam Puratchiveeran Saravanakumar (eds) Remediation of heavy metal ions using nanomaterials sourced from wastewaters. Nanotechnology for food, agriculture, and environment, pp 255–296
dc.relation.referencesVinayagam Y, V DR (2024) Mycosynthesis of TiO2 nanoparticles using Aspergillus penicillioides for toxic metal removal and photocatalytic applications. J Wat Process Eng 67:106279. https:// doi. org/ 10. 1016/j. jwpe. 2024. 106279
dc.relation.referencesVu HHT, Gu S, Thriveni T, Khan MD, Tuan LQ, Ahn JW (2019) Sustainable treatment for sulfate and lead removal from battery wastewater. Sustainability 11(13):3497
dc.relation.referencesWang CL, Ozuna SC, Clark DS, Keasling JD (2002) A deep-sea hydrothermal vent isolate, Pseudomonas aeruginosa CW961, requires thiosulfate for Cd2+ tolerance and precipitation. Biotech Lett 24(8):637–641. https:// doi. org/ 10. 1023/A: 10150 43324 584
dc.relation.referencesWang T, Wang P, Pan L, He Z, Dai L, Wang L, Liu S, Jun SC, Lu B, Liang S, Zhou J (2023) Stabling zinc metal anode with polydopamine regulation through dual effects of fast desolvation and ion confinement. Adv Energy Mater 13(5):2203523. https:// doi. org/ 10. 1002/ aenm. 20220 3523
dc.relation.referencesXu X, Wang T, Sun M, Bai Y, Fu C, Zhang L, Xiaoyan H, Spencer H (2019) Management principles for heavy metal contaminated farmland based on ecological risk — a case study in the pilot area of Hunan province, China. Sci Total Environ 684:537–547. https:// doi. org/ 10. 1016/j. scito tenv. 2019. 05. 015
dc.relation.referencesYan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359. https:// doi. org/ 10. 3389/ fpls. 2020. 00359
dc.relation.referencesZhang Y, Duan X (2020) Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate. Water Sci Technol 81(6):1130–1136. https:// doi. org/ 10. 2166/ wst. 2020. 208
dc.rightsBreve declaración de derechos de autor.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceEnvironmental Science and Pollution Research
dc.subject.lembBattery production
dc.subject.lembEnvironmental pollution
dc.subject.lembBioaccumulation
dc.subject.lembBioremediation
dc.subject.lembBiosorption
dc.subject.lembPhytoremediation
dc.subject.lembSustainable technologies
dc.subject.lembEnvironmental sustainability
dc.subject.ocde1. Ciencias Naturales
dc.subject.odsODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
dc.subject.odsODS 6: Agua limpia y saneamiento. Garantizar la disponibilidad y la gestión sostenible del agua y el saneamiento para todos
dc.subject.proposalBattery effluents
dc.subject.proposalMicroorganism
dc.subject.proposalBioremediation
dc.subject.proposalNanomaterials
dc.subject.proposalHeavy metals
dc.subject.proposalPhytoremediation
dc.titleBiological approaches to mitigate heavy metal pollution from battery production effluents: advances, challenges, and perspectives
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_18cf
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dcterms.audienceComunidad académica y Comunidad Científica
dspace.entity.typePublication
relation.isAuthorOfPublicationf428bf31-0676-48a7-b388-35f7f51dbbfa
relation.isAuthorOfPublication5f6ba42b-2b79-4fee-9302-07addc317184
relation.isAuthorOfPublication8ce90bb1-c5d7-4bdd-b27d-bbf948233d0d
relation.isAuthorOfPublication74ceb186-b60b-4210-9548-9a89e1a8f37b
relation.isAuthorOfPublication.latestForDiscoveryf428bf31-0676-48a7-b388-35f7f51dbbfa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
s11356-025-36792-8.pdf
Tamaño:
2.52 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: