Publicación: Toward a digital ecosystem for additive manufacturing driven by standards-based digital thread and digital twins
| dc.contributor.author | Rodríguez Gasca, Efraín Andrés | |
| dc.contributor.author | Alvares Alberto José | |
| dc.contributor.researchgroup | Grupo de Investigación Automatización Industrial y Control (GAICO) | |
| dc.date.accessioned | 2026-01-14T13:15:22Z | |
| dc.date.issued | 2025-12-12 | |
| dc.description | Incluye imágenes, gráficos, tablas | |
| dc.description.abstract | The ongoing digitalization of manufacturing is transforming how products are designed, produced, and optimized, driven by the convergence of the Digital Thread (DTh) and Digital Twin (DTw) paradigms. However, achieving seamless integration across these technologies remains a major challenge due to persistent issues of data interoperability, consistency, collaboration, and intelligent data exchange throughout the product lifecycle. Moreover, the limited intelligence at the machine level and the fragmentation of data across heterogeneous systems hinder the realization of fully connected, autonomous manufacturing environments. To address these challenges, this work conducts a comprehensive review of the literature on DTh and DTw technologies, focusing on their application in additive manufacturing (AM) and their alignment with international standards for data exchange and system interoperability. Building on this foundation, a unified digital ecosystem for contextualized intelligence is proposed, aiming to integrate DTh and DTw through standardized, semantically rich, and interoperable data flows. Furthermore, a standards-based DTh–DTw framework is presented, leveraging key industrial standards, including STEP/STEP-NC, MTConnect, QIF, OPC UA, MQTT, and ISO 23247, to ensure traceability, real-time synchronization, and data-driven decision-making across the AM lifecycle. Two implementation scenarios validate the proposed approach: (i) an FDM-based AM process using STEP-NC and MTConnect for integrated process planning and monitoring, and (ii) a robotic wire-based LMD cell featuring three DTw implementations compliant with ISO 23247 for real-time simulation, predictive maintenance, and process visualization. These implementations demonstrate the feasibility of constructing interoperable, data-centric manufacturing workflows using open standards. The results underscore the potential of the proposed ecosystem to enhance interoperability, data consistency, and intelligence across manufacturing processes, while also revealing current limitations in AM-specific standardization and cross-platform integration. Although focused on AM, the framework is inherently extensible to other manufacturing domains, paving the way toward standards-driven, intelligent, and generative manufacturing ecosystems. | |
| dc.format.extent | 32 Páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Rodriguez, E., & Alvares, A. J. (2025). Toward a Digital Ecosystem for Additive Manufacturing Driven by Standards-Based Digital Thread and Digital Twins. IEEE Access, 13, 207776–207807. https://doi.org/10.1109/ACCESS.2025.3641205 | |
| dc.identifier.doi | 10.1109/ACCESS.2025.3641205 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/14291 | |
| dc.identifier.url | https://ieeexplore.ieee.org/document/11282428 | |
| dc.language.iso | eng | |
| dc.publisher | IEEE Access | |
| dc.relation.references | O. Kravchenko, M. Leshchenko, D. Marushchak, Y. Vdovychenko, and S. Boguslavska, ‘‘The digitalization as a global trend and growth factor of the modern economy,’’ in Proc. SHS Web Conf., vol. 65, May 2019, p. 07004. [Online]. Available: https://www.shs-conferences.org/10.1051/ shsconf/20196507004 | |
| dc.relation.references | R. Rosen, G. von Wichert, G. Lo, and K. D. Bettenhausen, ‘‘About the importance of autonomy and digital twins for the future of manufacturing,’’ IFAC-PapersOnLine, vol. 48, no. 3, pp. 567–572, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S2405896315003808 | |
| dc.relation.references | C. Legner, T. Eymann, T. Hess, C. Matt, T. Böhmann, P. Drews, A. Mädche, N. Urbach, and F. Ahlemann, ‘‘Digitalization: Opportunity and challenge for the business and information systems engineering community,’’ Bus. Inf. Syst. Eng., vol. 59, no. 4, pp. 301–308, Aug. 2017. | |
| dc.relation.references | R. Y. Zhong, X. Xu, E. Klotz, and S. T. Newman, ‘‘Intelligent manufacturing in the context of industry 4.0: A review,’’ Engineering, vol. 3, no. 5, pp. 616–630, Oct. 2017. [Online]. Available: https:// linkinghub.elsevier.com/retrieve/pii/S2095809917307130 | |
| dc.relation.references | F. Tao and Q. Qi, ‘‘New IT driven service-oriented smart manufacturing: Framework and characteristics,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 1, pp. 81–91, Jan. 2019. | |
| dc.relation.references | P. Zheng, H. Wang, Z. Sang, R. Y. Zhong, Y. Liu, C. Liu, K. Mubarok, S. Yu, and X. Xu, ‘‘Smart manufacturing systems for industry 4.0: Conceptual framework, scenarios, and future perspectives,’’ Frontiers Mech. Eng., vol. 13, no. 2, pp. 137–150, Jun. 2018. [Online]. Available: http://link. springer.com/10.1007/s11465-018-0499-5 | |
| dc.relation.references | X. Xu, Y. Lu, B. Vogel-Heuser, and L. Wang, ‘‘Industry 4.0 and industry 5.0—Inception, conception and perception,’’ J. Manuf. Syst., vol. 61, pp. 530–535, Oct. 2021. | |
| dc.relation.references | X. Li, A. Nassehi, H. Yang, F. Tao, J. Sutherland, L. Wang, and R. Gao, ‘‘Generative manufacturing systems,’’ SSRN Electron. J., 2025. | |
| dc.relation.references | J. Warlick, R. Godziela, and D. Mitterbuchner. (2023). Think Thread First: Surf the Wave of Product Data. Accessed: Jan. 2, 2024. [Online]. Available: https://www.ge.com/research/offering/digital-twin-creation | |
| dc.relation.references | C. Leiva. (2016). Demystifying the Digital Thread and Digital Twin Concepts. Accessed: Jan. 2, 2024. [Online]. Available: https://www. industryweek.com/technology-and-iiot/systems-integration/article/ 22007865/demystifying-the-digital-thread-and-digital-twin-concepts | |
| dc.relation.references | E. Rodriguez, A. Alvares, and C. Riaño, ‘‘STEP-NC in additive manufacturing: A comprehensive review, architecture, and data model proposal,’’ Int. J. Adv. Manuf. Technol., vol. 137, nos. 11–12, pp. 5751–5787, Apr. 2025. [Online]. Available: https://link.springer.com/10.1007/s00170- 025-15290-8 | |
| dc.relation.references | C. Liu, L. L. Roux, C. Körner, O. Tabaste, F. Lacan, and S. Bigot, ‘‘Digital twin-enabled collaborative data management for metal additive manufacturing systems,’’ J. Manuf. Syst., vol. 62, pp. 857–874, Jan. 2022, doi: 10.1016/j.jmsy.2020.05.010. | |
| dc.relation.references | Additive Manufacturing—General Principles–Fundamentals and Vocabulary, Standard ISO/ASTM 52900, 2021 | |
| dc.relation.references | J. Butt, ‘‘Exploring the interrelationship between additive manufacturing and industry 4.0,’’ Designs, vol. 4, no. 2, p. 13, Jun. 2020. | |
| dc.relation.references | L. Cohen, ‘‘The digital thread: Transformation to automation,’’ Composites World, 2010. Accessed: Dec. 5, 2025. [Online]. Available: https://www.compositesworld.com/columns/the-digitalthread-transformation-to-automation | |
| dc.relation.references | T. D. West and A. Pyster, ‘‘Untangling the digital thread: The challenge and promise of model-based engineering in defense acquisition,’’ INSIGHT, vol. 18, no. 2, pp. 45–55, 2015. | |
| dc.relation.references | T. D. Hedberg, M. Bajaj, and J. A. Camelio, ‘‘Using graphs to link data across the product lifecycle for enabling smart manufacturing digital threads,’’ J. Comput. Inf. Sci. Eng., vol. 20, no. 1, pp. 1–15, Feb. 2020, doi: 10.1115/1.4044921. | |
| dc.relation.references | M. Helu and T. Hedberg, ‘‘Enabling smart manufacturing research and development using a product lifecycle test bed,’’ Proc. Manuf., vol. 1, pp. 86–97, Jan. 2015, doi: 10.1016/j.promfg.2015.09.066 | |
| dc.relation.references | T. D. Hedberg, M. Bajaj, and J. A. Camelio, ‘‘Using graphs to link data across the product lifecycle for enabling smart manufacturing digital threads,’’ J. Comput. Inf. Sci. Eng., vol. 20, no. 1, Feb. 2020, doi: 10.1115/1.4044921. | |
| dc.relation.references | M. Helu, T. Hedberg, and A. B. Feeney, ‘‘Reference architecture to integrate heterogeneous manufacturing systems for the digital thread,’’ CIRP J. Manuf. Sci. Technol., vol. 19, pp. 191–195, Nov. 2017, doi: 10.1016/j.cirpj.2017.04.002. | |
| dc.relation.references | S. Kwon, L. V. Monnier, R. Barbau, and W. Z. Bernstein, ‘‘Enriching standards-based digital thread by fusing as-designed and as-inspected data using knowledge graphs,’’ Adv. Eng. Informat., vol. 46, Oct. 2020, Art. no. 101102, doi: 10.1016/j.aei.2020.101102. | |
| dc.relation.references | L. Sun, Z. Jiao, S. Wang, F. Jiang, and X. Li, ‘‘A consistency evaluation method for digital twins in manufacturing,’’ IEEE Access, vol. 13, pp. 109046–109056, 2025. | |
| dc.relation.references | D. B. Kim, P. Witherell, R. Lipman, and S. C. Feng, ‘‘Streamlining the additive manufacturing digital spectrum: A systems approach,’’ Additive Manuf., vol. 5, pp. 20–30, Jan. 2015, doi: 10.1016/j.addma.2014.10.004. | |
| dc.relation.references | A. R. Nassar and E. W. Reutzel, ‘‘A proposed digital thread for additive manufacturing,’’ Dept. Mech. Eng., Appl. Res. Lab., Pennsylvania State Univ., 2013. | |
| dc.relation.references | R. Bonnard, J.-Y. Hascoet, and P. Mognol, ‘‘Data model for additive manufacturing digital thread: State of the art and perspectives,’’ Int. J. Comput. Integr. Manuf., vol. 32, no. 12, pp. 1170–1191, Dec. 2019, doi: 10.1080/0951192x.2019.1690681. | |
| dc.relation.references | D. B. Kim, P. Witherell, Y. Lu, and S. Feng, ‘‘Toward a digital thread and data package for metals-additive manufacturing,’’ Smart Sustain. Manuf. Syst., vol. 1, no. 1, pp. 75–100, Feb. 2017, doi: 10.1520/ssms20160003. | |
| dc.relation.references | R. Bonnard, P. Mognol, and J.-Y. Hascoët, ‘‘A new digital chain for additive manufacturing processes,’’ Virtual Phys. Prototyping, vol. 5, no. 2, pp. 75–88, Jun. 2010, doi: 10.1080/17452751003696916. | |
| dc.relation.references | R. Bonnard, J.-Y. Hascoët, P. Mognol, and I. Stroud, ‘‘STEP-NC digital thread for additive manufacturing: Data model, implementation and validation,’’ Int. J. Comput. Integr. Manuf., vol. 31, no. 11, pp. 1141–1160, Nov. 2018, doi: 10.1080/0951192x.2018.1509130. | |
| dc.relation.references | R. Bonnard, J.-Y. Hascoët, P. Mognol, E. Zancul, and A. J. Alvares, ‘‘Hierarchical object-oriented model (HOOM) for additive manufacturing digital thread,’’ J. Manuf. Syst., vol. 50, pp. 36–52, Jan. 2019, doi: 10.1016/j.jmsy.2018.11.003. | |
| dc.relation.references | D. Mies, W. Marsden, and S. Warde, ‘‘Overview of additive manufacturing informatics: ‘A digital thread,’’’ Integrating Mater. Manuf. Innov., vol. 5, no. 1, pp. 114–142, Dec. 2016, doi: 10.1186/s40192-016- 0050-7. | |
| dc.relation.references | F. Belkadi, L. M. Vidal, A. Bernard, E. Pei, and E. M. Sanfilippo, ‘‘Towards an unified additive manufacturing product-process model for digital chain management purpose,’’ Proc. CIRP, vol. 70, pp. 428–433, Jan. 2018. | |
| dc.relation.references | J. Xiao, N. Anwer, A. Durupt, J. Le Duigou, and B. Eynard, ‘‘Information exchange standards for design, tolerancing and additive manufacturing: A research review,’’ Int. J. Interact. Design Manuf. (IJIDeM), vol. 12, no. 2, pp. 495–504, May 2018, doi: 10.1007/s12008-017-0401-4. | |
| dc.relation.references | J. Xiao and Y. Lei, ‘‘Enriching semantics of geometry features and parameters for additive manufacturing peculiar structure based on STEP standards,’’ Crystals, vol. 12, no. 8, p. 1154, Aug. 2022, doi: 10.3390/cryst12081154. | |
| dc.relation.references | E. Pei, M. Ressin, R. I. Campbell, B. Eynard, and J. Xiao, ‘‘Investigating the impact of additive manufacturing data exchange standards for re-distributed manufacturing,’’ Prog. Additive Manuf., vol. 4, no. 3, pp. 331–344, Sep. 2019, doi: 10.1007/s40964-019-00085-7 | |
| dc.relation.references | T. Mahan, N. Meisel, C. McComb, and J. Menold, ‘‘Pulling at the digital thread: Exploring the tolerance stack up between automatic procedures and expert strategies in scan to print processes,’’ J. Mech. Design, vol. 141, no. 2, pp. 1–12, Feb. 2019, doi: 10.1115/1.4041927. | |
| dc.relation.references | E. Bonham, K. McMaster, E. Thomson, M. Panarotto, J. R. Müller, O. Isaksson, and E. Johansson, ‘‘Designing and integrating a digital thread system for customized additive manufacturing in multi-partner kayak production,’’ Systems, vol. 8, no. 4, p. 43, Nov. 2020. | |
| dc.relation.references | N. Gupta, A. Tiwari, S. T. S. Bukkapatnam, and R. Karri, ‘‘Additive manufacturing cyber-physical system: Supply chain cybersecurity and risks,’’ IEEE Access, vol. 8, pp. 47322–47333, 2020. | |
| dc.relation.references | M. Sjarov, N. Ceriani, T. Lechler, and J. Franke, ‘‘Building blocks for digitally integrated process chains in PBF-based additive manufacturing,’’ in Proc. Congr. German Academic Assoc. Prod. Technol., 2021, pp. 368–377. | |
| dc.relation.references | Y. Xiong, Y. Tang, Q. Zhou, Y. Ma, and D. W. Rosen, ‘‘Intelligent additive manufacturing and design: State of the art and future perspectives,’’ Additive Manuf., vol. 59, Nov. 2022, Art. no. 103139. | |
| dc.relation.references | G. L. Knapp, B. Stump, L. Scime, A. Márquez Rossy, C. Joslin, W. Halsey, and A. Plotkowski, ‘‘Leveraging the digital thread for physics-based prediction of microstructure heterogeneity in additively manufactured parts,’’ Additive Manuf., vol. 78, Sep. 2023, Art. no. 103861. | |
| dc.relation.references | G. L. Knapp, S. T. Reeve, J. Coleman, M. Rolchigo, B. Stump, S. DeWitt, and A. Plotkowski, ‘‘Myna: Connecting powder bed fusion build data to simulation tools for digital twin applications,’’ Comput. Mater. Sci., vol. 258, Aug. 2025, Art. no. 114094. | |
| dc.relation.references | S. Karadgi, P. M. Bhovi, A. Y. Patil, K. Ramaiah, K. Venkateswarlu, and T. G. Langdon, ‘‘A conceptual framework towards the realization of in situ monitoring and control of end-to-end additive manufacturing process,’’ Micro Nanosystems, vol. 15, no. 2, pp. 92–101, Jun. 2023. | |
| dc.relation.references | S. C. Feng, A. Jones, and G. Shao, ‘‘Data requirements for digital twins in additive manufacturing,’’ in Manufacturing Equipment and Automation; Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability. New York, NY, USA: American Society of Mechanical Engineers, 2023. | |
| dc.relation.references | K. Poka, B. Merz, M. Epperlein, and K. Hilgenberg, ‘‘Integration of the whole digital chain in a unique file for PBF-LB/M: Practical implementation within a digital thread and its advantages,’’ in Proc. Int. Conf. Additive Manuf. Products Appl., 2024, pp. 91–114. | |
| dc.relation.references | J. Xiao, N. Anwer, H. Huang, R. Bonnard, B. Eynard, C. Huang, and E. Pei, ‘‘Information exchange and knowledge discovery for additive manufacturing digital thread: A comprehensive literature review,’’ Int. J. Comput. Integr. Manuf., vol. 38, no. 8, pp. 1–26, Aug. 2025, doi: 10.1080/0951192x.2024.2387768. | |
| dc.relation.references | R. Furferi, ‘‘Integrating geometric dimensioning and tolerancing with additive manufacturing: A perspective,’’ Appl. Sci., vol. 15, no. 6, p. 3398, Mar. 2025. | |
| dc.relation.references | E. E. Rodriguez, R. Bonnard, and A. J. Álvares, ‘‘Proposal of an advanced data model for step-NC compliant additive manufacturing,’’ in Proc. 24th ABCM Int. Congr. Mech. Eng., 2017, pp. 1–16, doi: 10.26678/abcm.cobem2017.cob17-2435. | |
| dc.relation.references | E. Rodriguez, C. Riaño, A. Alvares, and R. Bonnard, ‘‘Design and dimensional synthesis of a linear delta robot with single legs for additive manufacturing,’’ J. Brazilian Soc. Mech. Sci. Eng., vol. 41, no. 11, pp. 1–16, Nov. 2019, doi: 10.1007/s40430-019-2039-6. | |
| dc.relation.references | C. Riaño, E. Rodriguez, and A. J. Alvares, ‘‘A closed-loop inspection architecture for additive manufacturing based on STEP standard,’’ IFAC-PapersOnLine, vol. 52, no. 13, pp. 2782–2787, 2019, doi: 10.1016/j.ifacol.2019.11.629. | |
| dc.relation.references | E. Rodriguez and A. Alvares, ‘‘A STEP-NC implementation approach for additive manufacturing,’’ Proc. Manuf., vol. 38, pp. 9–16, Jan. 2019. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/ S2351978920300020 | |
| dc.relation.references | Y. Qin, Q. Qi, P. J. Scott, and X. Jiang, ‘‘Status, comparison, and future of the representations of additive manufacturing data,’’ Comput.-Aided Design, vol. 111, pp. 44–64, Jun. 2019, doi: 10.1016/j.cad.2019.02.004 | |
| dc.relation.references | A. Kumar, P. Kumar, R. K. Mittal, and H. Singh, Printing File Formats for Additive Manufacturing Technologies. Amsterdam, The Netherlands: Elsevier, 2023, pp. 87–102, doi: 10.1016/B978-0-323-91834-3.00006-5 | |
| dc.relation.references | (2024). New Open Data Format Simplifies 3D Printing Process. Accessed: Oct. 5, 2025. [Online]. Available: https://spaener.com/en/article/newopen-data-format-simplifies-3d-printing-process | |
| dc.relation.references | Stereolithography Interface Specification, 3D Systems, Rock Hill, SC, USA, 1989. | |
| dc.relation.references | Specification for Additive Manufacturing File Format (AMF), Standard ISO/ASTM-52915, 2020. | |
| dc.relation.references | 3d Manufacturing Format (3MF)–The File Format for 3D Printing, 3MF Consortium, San Francisco, CA, USA, 2014 | |
| dc.relation.references | Wavefront Advanced Visualiser Manual–appendix B1. Object Files (.obj), Wavefront Technologies, Coimbatore, India, 1995. | |
| dc.relation.references | Industrial Automation Systems and Integration—Product Data Representation and Exchange—Part 1: Overview and Fundamental Principles, Standard 10303-1, 2024. | |
| dc.relation.references | Industrial Automation Systems and Integration–Physical Device Control– Data Model for Computerized Numerical Controllers, Standard 14649-1, International Standard Organization, 2003. | |
| dc.relation.references | Industrial Automation Systems and Integration–Product Data Representation and Exchange—Part 238: Application Protocol: Model Based Integrated Manufacturing, Standard 10303-238, International Standard Organization, 2022. | |
| dc.relation.references | A. J. Álvares, E. Rodriguez, C. I. Riaño Jaimes, J. S. Toquica, and J. C. E. Ferreira, ‘‘STEP-NC architectures for industrial robotic machining: Review, implementation and validation,’’ IEEE Access, vol. 8, pp. 152592–152610, 2020, doi: 10.1109/ACCESS.2020.3017561. | |
| dc.relation.references | C. I. R. Jaimes, A. J. Álvares, and C. A. Peña, ‘‘Kinematic compensation algorithm for reducing errors in a closed-loop manufacturing system,’’ IEEE Access, vol. 12, pp. 89493–89505, 2024 | |
| dc.relation.references | STEP-NC Standard–Third Edition, Standard ISO 10303-238, 2022. [Online]. Available: https://ap238.org/ap238e3 | |
| dc.relation.references | F. A. Milaat, P. Witherell, M. Hardwick, H. Yeung, V. Ferrero, L. Monnier, and M. Brown, ‘‘STEP-NC process planning for powder bed fusion additive manufacturing,’’ J. Comput. Inf. Sci. Eng., vol. 22, no. 6, pp. 1–11, Dec. 2022, doi: 10.1115/1.4055855. | |
| dc.relation.references | V. B. P. RajratnaKharat, ‘‘Digital twin: Manufacturing excellence through virtual factory replication,’’ 3MF Consortium, 3D Manufacturing Format (3MF), 3D Printing, San Francisco, CA, USA, 2014. Accessed: Dec. 5, 2025. [Online]. Available: https://3mf.io | |
| dc.relation.references | E. H. Glaessgen and D. S. Stargel, ‘‘The digital twin paradigm for future NASA and U.S. Air force vehicles,’’ p. 1818, 2012 | |
| dc.relation.references | F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, ‘‘Digital twin in industry: Stateof-the-art,’’ IEEE Trans. Ind. Informat., vol. 15, no. 4, pp. 2405–2415, Apr. 2019, doi: 10.1109/TII.2018.2873186 | |
| dc.relation.references | Automation Systems and Integration–Digital Twin Framework for Manufacturing—Part 1: Overview and General Principles, Standard 23247-1, International Standard Organization, 2021. | |
| dc.relation.references | B. R. Barricelli, E. Casiraghi, and D. Fogli, ‘‘A survey on digital twin: Definitions, characteristics, applications, and design implications,’’ IEEE Access, vol. 7, pp. 167653–167671, 2019, doi: 10.1109/ACCESS.2019.2953499 | |
| dc.relation.references | W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, ‘‘Digital twin in manufacturing: A categorical literature review and classification,’’ IFAC-PapersOnLine, vol. 51, no. 11, pp. 1016–1022, 2018, doi: 10.1016/j.ifacol.2018.08.474. | |
| dc.relation.references | Z. Chen, K. Surendraarcharyagie, K. Granland, C. Chen, X. Xu, Y. Xiong, C. Davies, and Y. Tang, ‘‘Service oriented digital twin for additive manufacturing process,’’ J. Manuf. Syst., vol. 74, pp. 762–776, Jun. 2024, doi: 10.1016/j.jmsy.2024.04.015. | |
| dc.relation.references | Y. Lu, C. Liu, K. I.-K. Wang, H. Huang, and X. Xu, ‘‘Digital twin-driven smart manufacturing: Connotation, reference model, applications and research issues,’’ Robot. Comput.-Integr. Manuf., vol. 61, Feb. 2020, Art. no. 101837. [Online]. Available: https://linkinghub. elsevier.com/retrieve/pii/S0736584519302480 | |
| dc.relation.references | F. Tao and M. Zhang, ‘‘Digital twin shop-floor: A new shopfloor paradigm towards smart manufacturing,’’ IEEE Access, vol. 5, pp. 20418–20427, 2017, doi: 10.1109/ACCESS.2017.2756069 | |
| dc.relation.references | (2016). Digital Thread and Digital Twin Demonstrations at Future of Flight. Accessed: Jan. 2, 2024. [Online]. Available: https://www.steptools. com/blog/20161005digitalthreaddemo/ | |
| dc.relation.references | K. M. Alam and A. El Saddik, ‘‘C2PS: A digital twin architecture reference model for the cloud-based cyber-physical systems,’’ IEEE Access, vol. 5, pp. 2050–2062, 2017, doi: 10.1109/ACCESS.2017.2657006. | |
| dc.relation.references | S. Aheleroff, X. Xu, R. Y. Zhong, and Y. Lu, ‘‘Digital twin as a service (DTaaS) in industry 4.0: An architecture reference model,’’ Adv. Eng. Informat., vol. 47, Jan. 2021, Art. no. 101225, doi: 10.1016/j.aei.2020.101225. | |
| dc.relation.references | Y. Zheng, S. Yang, and H. Cheng, ‘‘An application framework of digital twin and its case study,’’ J. Ambient Intell. Humanized Comput., vol. 10, no. 3, pp. 1141–1153, Mar. 2019, doi: 10.1007/s12652-018-0911-3 | |
| dc.relation.references | M. Bevilacqua, E. Bottani, F. E. Ciarapica, F. Costantino, L. Di Donato, A. Ferraro, G. Mazzuto, A. Monteriu, G. Nardini, M. Ortenzi, M. Paroncini, M. Pirozzi, M. Prist, E. Quatrini, M. Tronci, and G. Vignali, ‘‘Digital twin reference model development to prevent Operators’ risk in process plants,’’ Sustainability, vol. 12, no. 3, p. 1088, Feb. 2020, doi: 10.3390/su12031088. | |
| dc.relation.references | Q. Qi, F. Tao, T. Hu, N. Anwer, A. Liu, Y. Wei, L. Wang, and A. Y. C. Nee, ‘‘Enabling technologies and tools for digital twin,’’ J. Manuf. Syst., vol. 58, pp. 3–21, Jan. 2021, doi: 10.1016/j.jmsy.2019.10.001. | |
| dc.relation.references | Á. Bárkányi, T. Chován, S. Németh, and J. Abonyi, ‘‘Modelling for digital twins—Potential role of surrogate models,’’ Processes, vol. 9, no. 3, p. 476, Mar. 2021, doi: 10.3390/pr9030476. | |
| dc.relation.references | G. Shao and M. Helu, ‘‘Framework for a digital twin in manufacturing: Scope and requirements,’’ Manuf. Lett., vol. 24, pp. 105–107, Apr. 2020, doi: 10.1016/j.mfglet.2020.04.004 | |
| dc.relation.references | Automation Systems and Integration–Digital Twin Framework for Manufacturing—Part 2: Reference Architecture, Standard ISO 23247-2, 2021 | |
| dc.relation.references | Automation Systems and Integration–Digital Twin Framework for Manufacturing—Part 3: Digital Representation of Manufacturing Elements, Standard ISO 23247-3, 2021. | |
| dc.relation.references | Automation Systems and Integration–digital Twin Framework for Manufacturing—Part 4: Information Exchange, Standard ISO 23247-4, 2021 | |
| dc.relation.references | Automation Systems and Integration–digital Twin Framework for Manufacturing—Part 5: Digital Thread for Digital Twin, Standard ISO 23247-5, 2024 | |
| dc.relation.references | Automation Systems and Integration–digital Twin Framework for Manufacturing—part 6: Digital Twin Composition, Standard ISO 23247-6, 2024. | |
| dc.relation.references | T. DebRoy, W. Zhang, J. Turner, and S. S. Babu, ‘‘Building digital twins of 3D printing machines,’’ Scripta Mater., vol. 135, pp. 119–124, Jul. 2017, doi: 10.1016/j.scriptamat.2016.12.005 | |
| dc.relation.references | G. L. Knapp, T. Mukherjee, J. S. Zuback, H. L. Wei, T. A. Palmer, A. De, and T. DebRoy, ‘‘Building blocks for a digital twin of additive manufacturing,’’ Acta Mater., vol. 135, pp. 390–399, Aug. 2017, doi: 10.1016/j.actamat.2017.06.039 | |
| dc.relation.references | T. Mukherjee and T. DebRoy, ‘‘A digital twin for rapid qualification of 3D printed metallic components,’’ Appl. Mater. Today, vol. 14, pp. 59–65, Mar. 2019, doi: 10.1016/j.apmt.2018.11.003. | |
| dc.relation.references | H. L. Wei, T. Mukherjee, W. Zhang, J. S. Zuback, G. L. Knapp, A. De, and T. DebRoy, ‘‘Mechanistic models for additive manufacturing of metallic components,’’ Prog. Mater. Sci., vol. 116, Feb. 2021, Art. no. 100703, doi: 10.1016/j.pmatsci.2020.100703. | |
| dc.relation.references | T. Shen and B. Li, ‘‘Digital twins in additive manufacturing: A state-ofthe-art review,’’ Int. J. Adv. Manuf. Technol., vol. 131, no. 1, pp. 63–92, Mar. 2024, doi: 10.1007/s00170-024-13092-y | |
| dc.relation.references | S. B. Amor, N. Elloumi, A. Eltaief, B. Louhichi, N. H. Alrasheedi, and A. Seibi, ‘‘Digital twin implementation in additive manufacturing: A comprehensive review,’’ Processes, vol. 12, no. 6, p. 1062, May 2024, doi: 10.3390/pr12061062. | |
| dc.relation.references | R. Reisch, T. Hauser, T. Kamps, and A. Knoll, ‘‘Robot based wire arc additive manufacturing system with context-sensitive multivariate monitoring framework,’’ Proc. Manuf., vol. 51, pp. 732–739, Jan. 2020, doi: 10.1016/j.promfg.2020.10.103. | |
| dc.relation.references | H. Mu, F. He, L. Yuan, H. Hatamian, P. Commins, and Z. Pan, ‘‘Online distortion simulation using generative machine learning models: A step toward digital twin of metallic additive manufacturing,’’ J. Ind. Inf. Integr., vol. 38, Mar. 2024, Art. no. 100563, doi: 10.1016/j.jii.2024.100563. | |
| dc.relation.references | S. Hartmann, O. Murua, J. I. Arrizubieta, A. Lamikiz, and P. Mayr, ‘‘Digital twin of the laser-DED process based on a multiscale approach,’’ Simul. Model. Pract. Theory, vol. 132, Apr. 2024, Art. no. 102881, doi: 10.1016/j.simpat.2023.102881. | |
| dc.relation.references | A. W. Malik, M. A. Mahmood, and F. Liou, ‘‘Digital twin–driven optimization of laser powder bed fusion processes: A focus on lack-offusion defects,’’ Rapid Prototyping J., vol. 30, no. 10, pp. 1977–1988, Nov. 2024, doi: 10.1108/rpj-02-2024-0091. | |
| dc.relation.references | G. Shao, ‘‘Use case scenarios for digital twin implementation based on iso 23247,’’ Adv. Manuf. Series (NIST AMS), Syst. Integr. Division, Eng. Lab., National Inst. Standards Technol., May 2021. [Online]. Available: https://doi.org/10.6028/NIST.AMS.400-2 | |
| dc.relation.references | D. Bong Kim, G. Shao, and G. Jo, ‘‘A digital twin implementation architecture for wire + arc additive manufacturing based on ISO 23247,’’ Manuf. Lett., vol. 34, pp. 1–5, Oct. 2022, doi: 10.1016/j.mfglet.2022.08.008 | |
| dc.relation.references | M.-S. Kang, D.-H. Lee, M. S. Bajestani, D. B. Kim, and S. D. Noh, ‘‘Edge computing-based digital twin framework based on ISO 23247 for enhancing data processing capabilities,’’ Machines, vol. 13, no. 1, p. 19, Dec. 2024, doi: 10.3390/machines13010019. | |
| dc.relation.references | J. V. A. Cabral, E. A. R. Gasca, and A. J. Alvares, ‘‘Digital twin implementation for machining center based on ISO 23247 standard,’’ IEEE Latin Amer. Trans., vol. 21, no. 5, pp. 628–635, May 2023, doi: 10.1109/TLA.2023.10130834. | |
| dc.relation.references | J. V. A. Cabral, A. J. Álvares, and G. Caribé de Carvalho, ‘‘Digital twin implementation for an additive manufacturing robotic cell based on the ISO 23247 standard,’’ IEEE Latin Amer. Trans., vol. 22, no. 8, pp. 651–658, Aug. 2024, doi: 10.1109/TLA.2024.10620386. | |
| dc.relation.references | B. Wallner, B. Zwölfer, T. Trautner, and F. Bleicher, ‘‘Digital twin development and operation of a flexible manufacturing cell using ISO 23247,’’ Proc. CIRP, vol. 120, pp. 1149–1154, Jan. 2023, doi: 10.1016/j.procir.2023.09.140. | |
| dc.relation.references | G.-N. Le, T. V. Nguyen, V.-D. Tran, N.-T. Nguyen, X. Tang, and T. Hoang, ‘‘Multi-services digital twin for modular production system based on ISO 23247 and Web server,’’ in Proc. 1st Int. Conf. Sustainability Emerg. Technol. Smart Manufacturings, 2025, pp. 679–689, doi: 10.1007/978- 981-97-7083-0_68 | |
| dc.relation.references | V. Melo, J. Barbosa, G. Mota, F. D. L. Prieta, and P. Leitao, ‘‘Design of an ISO 23247 compliant digital twin for an automotive assembly line,’’ in Proc. IEEE 7th Int. Conf. Ind. Cyber-Phys. Syst. (ICPS), May 2024, pp. 1–6, doi: 10.1109/icps59941.2024.10640052. | |
| dc.relation.references | G. Caiza and R. Sanz, ‘‘Immersive digital twin under ISO 23247 applied to flexible manufacturing processes,’’ Appl. Sci., vol. 14, no. 10, p. 4204, May 2024, doi: 10.3390/app14104204. | |
| dc.relation.references | A. J. Alvares, E. Rodriguez, and B. Figueroa, ‘‘Digital-twin-enabled process monitoring for a robotic additive manufacturing cell using wirebased laser metal deposition,’’ Processes, vol. 13, no. 8, p. 2335, Jul. 2025 | |
| dc.relation.references | T. B. Minh, D. X. Phu, Q. H. Nguyen, K. H. V. Nguyen, and T. T. T. Phan, ‘‘A digital twin implementation framework for a collaborative robot based on iso 23247,’’ in Proc. Int. Conf. Sustain. Energy Technol., 2024, pp. 747–755, doi: 10.1007/978-981-97-1868-9_74. | |
| dc.relation.references | A. Sobowale, L. Freitas, A. Lima, P. Marujo, F. Pereira, and H. Lopes, ‘‘Leveraging the ISO 23247 framework for the development of digital twins of stacker cranes,’’ in Innovations in Industrial Engineering III (Lecture Notes in Mechanical Engineering), J. Machado et al., Eds., Springer, 2024, pp. 36–50, doi: 10.1007/978-3-031-61582-5_4. | |
| dc.relation.references | J. Cederbladh, E. Ferko, and E. Lundin, ‘‘Towards adopting a digital twin framework (ISO 23247) for battery systems,’’ in Proc. 21st Int. Conf. Inf. Technology-New Generat., 2024, pp. 397–404, doi: 10.1007/978-3-031- 56599-1_51. | |
| dc.relation.references | A. Shtofenmakher and G. Shao, ‘‘Adaptation of ISO 23247 to aerospace digital twin applications-on-orbit collision avoidance and space-based debris detection,’’ Aerosp. Res. Central, vol. 2024, pp. 8–12, Jan. 2024. | |
| dc.relation.references | M. Helu, A. Joseph, and T. Hedberg, ‘‘A standards-based approach for linking as-planned to as-fabricated product data,’’ CIRP Ann., vol. 67, no. 1, pp. 487–490, 2018, doi: 10.1016/j.cirp.2018.04.039. | |
| dc.relation.references | Industrial Automation Systems and Integration–Product Data Representation and Exchange—Part 203: Application Protocol: Configuration Controlled 3D Design of Mechanical Parts and Assemblies, Standard 10303-203, 2011. | |
| dc.relation.references | Industrial Automation Systems and Integration–Product Data Representation and Exchange–Part 214: Application Protocol: Core Data for Automotive Mechanical Design Processes, Standard 10303-214, 2010. | |
| dc.relation.references | Industrial Automation Systems and Integration–Product Data Representation and Exchange–Part 242: Application Protocol: Managed Model-based 3D Engineering, Standard 10303-242, International Standard Organization, 2022. | |
| dc.relation.references | Industrial Automation Systems and Integration–Product Data Representation and Exchange—Part 224: Application Protocol: Mechanical Product Definition for Process Planning Using Machining Features, Standard 10303-224, International Standard Organization, 2006. | |
| dc.relation.references | Industrial Automation Systems and Integration–Physical Device Control– Data Model for Computerized Numerical Controllers - Part 10: General Process Data, Standard 14649-10, International Standard Organization, 2004. | |
| dc.relation.references | Industrial Automation Systems and Integration–Physical Device Control– Data Model for Computerized Numerical Controllers–Part 17: Process Data for Additive Manufacturing, Standard 14649-17, International Standard Organization, 2020. | |
| dc.relation.references | MTConnect Standard, AMT-The Assoc. Manuf. Technol., McLean, VA, USA, 2018. | |
| dc.relation.references | OPC Foundation—The Industrial Interoperability Standard, OPC Unified Architecture, Scottsdale, AZ, USA, 2008. | |
| dc.relation.references | Information Technology—Message Queuing Telemetry Transport (MQTT), Standard 20922, International Standard Organization, 2016. | |
| dc.relation.references | I. 10303-219, ‘‘Industrial automation systems and integration—Product data representation and exchange—Part 219: Application protocol: Dimensional inspection information exchange,’’ International Standard Organization, 2007. | |
| dc.relation.references | Automation Systems and Integration–Quality Information Framework (QIF)–An Integrated Model for Manufacturing Quality Information, Standard 23952, International Standard Organization, 2020. | |
| dc.relation.references | (2015). Reference Architecture Model Industrie 4.0. [Online]. Available: https://www.zvei.org/fileadmin/ userupload/PresseundMedien/Publikationen/2016/januar/ GMAStatusReportReferenceArchtitectureModelIndustrie4.0RAMI4. 0/GMA-Status-Report-RAMI-40-July-2015.pdf | |
| dc.relation.references | I. 23704-1, ‘‘General requirements for cyber-physically controlled smart machine tool systems (CPSMT) - Part 1: Overview and fundamental principles,’’ International Standard Organization, 2022 | |
| dc.relation.references | General Requirements for Cyber-physically Controlled Smart Machine Tool Systems (CPSMT)–Part 3: Reference Architecture of CPSMT for Additive Manufacturing, Standard 23704-3, International Standard Organization, 2023. | |
| dc.relation.references | E. Rodriguez. STEP-NC Additive. Accessed: Mar. 31, 2024. [Online]. Available: https://github.com/EfrainRodriguez/additive-manufacturingstep-nc | |
| dc.relation.references | RepRap Machine Model Prusa Mendel for STEP-NC Machine. Accessed: Mar. 31, 2024. [Online]. Available: https://github.com/StepNcLadprer/ RepRap-machine-model-Prusa-Mendel-for-STEP-NC-Machine | |
| dc.relation.references | E. Rodriguez, J. P. Rodriguez, A. J. Alvares, C. Riaño, and L. E. D. Oliveira, ‘‘Developing a MTConnect framework for RepRap additive manufacturing machines,’’ IFAC-PapersOnLine, vol. 52, no. 13, pp. 2507–2512, 2019. [Online]. Available: https://linkinghub.elsevier. com/retrieve/pii/S2405896319315708 | |
| dc.relation.references | J. Lee and H. Su, ‘‘A unified industrial large knowledge model framework in industry 4.0 and smart manufacturing,’’ Int. J. AI for Mater. Design, vol. 1, no. 2, p. 41, Jul. 2024. | |
| dc.rights.license | Atribución 4.0 Internacional (CC BY 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.ddc | 670 - Manufactura | |
| dc.subject.lemb | Manufactura digital | |
| dc.subject.lemb | Interoperabilidad de sistemas | |
| dc.subject.lemb | Internet de las cosas (IIoT) | |
| dc.subject.lemb | Automatización industrial | |
| dc.subject.lemb | Digital manufacturing | |
| dc.subject.lemb | Systems interoperability | |
| dc.subject.lemb | Internet of Things (IIoT) | |
| dc.subject.lemb | Industrial automation | |
| dc.subject.ocde | 2. Ingeniería y Tecnología::2C. Ingeniería Mecánica::2C01. Ingeniería mecánica | |
| dc.subject.ocde | 2. Ingeniería y Tecnología::2E. Ingeniería de los Materiales::2E01. Ingeniería mecánica | |
| dc.subject.ods | ODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación | |
| dc.subject.ods | ODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles | |
| dc.subject.proposal | Additive Manufacturing | |
| dc.subject.proposal | Digital Thread | |
| dc.subject.proposal | Digital Twins | |
| dc.subject.proposal | STEP-NC | |
| dc.subject.proposal | ISO 23247 | |
| dc.subject.proposal | ISO 10303-238 | |
| dc.subject.proposal | Data Integration | |
| dc.subject.proposal | Interoperability | |
| dc.subject.proposal | Interoperability | |
| dc.subject.proposal | Laser Metal Deposition | |
| dc.title | Toward a digital ecosystem for additive manufacturing driven by standards-based digital thread and digital twins | |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_18cf | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 645833b4-d139-46af-a054-b02f41055694 | |
| relation.isAuthorOfPublication.latestForDiscovery | 645833b4-d139-46af-a054-b02f41055694 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Toward_a_Digital_Ecosystem_for_Additive_Manufacturing_Driven_by_Standards-Based_Digital_Thread_and_Digital_Twins.pdf
- Tamaño:
- 5.93 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 14.49 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: