Publicación:
Toward a digital ecosystem for additive manufacturing driven by standards-based digital thread and digital twins

dc.contributor.authorRodríguez Gasca, Efraín Andrés
dc.contributor.authorAlvares Alberto José
dc.contributor.researchgroupGrupo de Investigación Automatización Industrial y Control (GAICO)
dc.date.accessioned2026-01-14T13:15:22Z
dc.date.issued2025-12-12
dc.descriptionIncluye imágenes, gráficos, tablas
dc.description.abstractThe ongoing digitalization of manufacturing is transforming how products are designed, produced, and optimized, driven by the convergence of the Digital Thread (DTh) and Digital Twin (DTw) paradigms. However, achieving seamless integration across these technologies remains a major challenge due to persistent issues of data interoperability, consistency, collaboration, and intelligent data exchange throughout the product lifecycle. Moreover, the limited intelligence at the machine level and the fragmentation of data across heterogeneous systems hinder the realization of fully connected, autonomous manufacturing environments. To address these challenges, this work conducts a comprehensive review of the literature on DTh and DTw technologies, focusing on their application in additive manufacturing (AM) and their alignment with international standards for data exchange and system interoperability. Building on this foundation, a unified digital ecosystem for contextualized intelligence is proposed, aiming to integrate DTh and DTw through standardized, semantically rich, and interoperable data flows. Furthermore, a standards-based DTh–DTw framework is presented, leveraging key industrial standards, including STEP/STEP-NC, MTConnect, QIF, OPC UA, MQTT, and ISO 23247, to ensure traceability, real-time synchronization, and data-driven decision-making across the AM lifecycle. Two implementation scenarios validate the proposed approach: (i) an FDM-based AM process using STEP-NC and MTConnect for integrated process planning and monitoring, and (ii) a robotic wire-based LMD cell featuring three DTw implementations compliant with ISO 23247 for real-time simulation, predictive maintenance, and process visualization. These implementations demonstrate the feasibility of constructing interoperable, data-centric manufacturing workflows using open standards. The results underscore the potential of the proposed ecosystem to enhance interoperability, data consistency, and intelligence across manufacturing processes, while also revealing current limitations in AM-specific standardization and cross-platform integration. Although focused on AM, the framework is inherently extensible to other manufacturing domains, paving the way toward standards-driven, intelligent, and generative manufacturing ecosystems.
dc.format.extent32 Páginas
dc.format.mimetypeapplication/pdf
dc.identifier.citationRodriguez, E., & Alvares, A. J. (2025). Toward a Digital Ecosystem for Additive Manufacturing Driven by Standards-Based Digital Thread and Digital Twins. IEEE Access, 13, 207776–207807. https://doi.org/10.1109/ACCESS.2025.3641205
dc.identifier.doi10.1109/ACCESS.2025.3641205
dc.identifier.urihttps://hdl.handle.net/20.500.12585/14291
dc.identifier.urlhttps://ieeexplore.ieee.org/document/11282428
dc.language.isoeng
dc.publisherIEEE Access
dc.relation.referencesO. Kravchenko, M. Leshchenko, D. Marushchak, Y. Vdovychenko, and S. Boguslavska, ‘‘The digitalization as a global trend and growth factor of the modern economy,’’ in Proc. SHS Web Conf., vol. 65, May 2019, p. 07004. [Online]. Available: https://www.shs-conferences.org/10.1051/ shsconf/20196507004
dc.relation.referencesR. Rosen, G. von Wichert, G. Lo, and K. D. Bettenhausen, ‘‘About the importance of autonomy and digital twins for the future of manufacturing,’’ IFAC-PapersOnLine, vol. 48, no. 3, pp. 567–572, 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/ S2405896315003808
dc.relation.referencesC. Legner, T. Eymann, T. Hess, C. Matt, T. Böhmann, P. Drews, A. Mädche, N. Urbach, and F. Ahlemann, ‘‘Digitalization: Opportunity and challenge for the business and information systems engineering community,’’ Bus. Inf. Syst. Eng., vol. 59, no. 4, pp. 301–308, Aug. 2017.
dc.relation.referencesR. Y. Zhong, X. Xu, E. Klotz, and S. T. Newman, ‘‘Intelligent manufacturing in the context of industry 4.0: A review,’’ Engineering, vol. 3, no. 5, pp. 616–630, Oct. 2017. [Online]. Available: https:// linkinghub.elsevier.com/retrieve/pii/S2095809917307130
dc.relation.referencesF. Tao and Q. Qi, ‘‘New IT driven service-oriented smart manufacturing: Framework and characteristics,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 1, pp. 81–91, Jan. 2019.
dc.relation.referencesP. Zheng, H. Wang, Z. Sang, R. Y. Zhong, Y. Liu, C. Liu, K. Mubarok, S. Yu, and X. Xu, ‘‘Smart manufacturing systems for industry 4.0: Conceptual framework, scenarios, and future perspectives,’’ Frontiers Mech. Eng., vol. 13, no. 2, pp. 137–150, Jun. 2018. [Online]. Available: http://link. springer.com/10.1007/s11465-018-0499-5
dc.relation.referencesX. Xu, Y. Lu, B. Vogel-Heuser, and L. Wang, ‘‘Industry 4.0 and industry 5.0—Inception, conception and perception,’’ J. Manuf. Syst., vol. 61, pp. 530–535, Oct. 2021.
dc.relation.referencesX. Li, A. Nassehi, H. Yang, F. Tao, J. Sutherland, L. Wang, and R. Gao, ‘‘Generative manufacturing systems,’’ SSRN Electron. J., 2025.
dc.relation.referencesJ. Warlick, R. Godziela, and D. Mitterbuchner. (2023). Think Thread First: Surf the Wave of Product Data. Accessed: Jan. 2, 2024. [Online]. Available: https://www.ge.com/research/offering/digital-twin-creation
dc.relation.referencesC. Leiva. (2016). Demystifying the Digital Thread and Digital Twin Concepts. Accessed: Jan. 2, 2024. [Online]. Available: https://www. industryweek.com/technology-and-iiot/systems-integration/article/ 22007865/demystifying-the-digital-thread-and-digital-twin-concepts
dc.relation.referencesE. Rodriguez, A. Alvares, and C. Riaño, ‘‘STEP-NC in additive manufacturing: A comprehensive review, architecture, and data model proposal,’’ Int. J. Adv. Manuf. Technol., vol. 137, nos. 11–12, pp. 5751–5787, Apr. 2025. [Online]. Available: https://link.springer.com/10.1007/s00170- 025-15290-8
dc.relation.referencesC. Liu, L. L. Roux, C. Körner, O. Tabaste, F. Lacan, and S. Bigot, ‘‘Digital twin-enabled collaborative data management for metal additive manufacturing systems,’’ J. Manuf. Syst., vol. 62, pp. 857–874, Jan. 2022, doi: 10.1016/j.jmsy.2020.05.010.
dc.relation.referencesAdditive Manufacturing—General Principles–Fundamentals and Vocabulary, Standard ISO/ASTM 52900, 2021
dc.relation.referencesJ. Butt, ‘‘Exploring the interrelationship between additive manufacturing and industry 4.0,’’ Designs, vol. 4, no. 2, p. 13, Jun. 2020.
dc.relation.referencesL. Cohen, ‘‘The digital thread: Transformation to automation,’’ Composites World, 2010. Accessed: Dec. 5, 2025. [Online]. Available: https://www.compositesworld.com/columns/the-digitalthread-transformation-to-automation
dc.relation.referencesT. D. West and A. Pyster, ‘‘Untangling the digital thread: The challenge and promise of model-based engineering in defense acquisition,’’ INSIGHT, vol. 18, no. 2, pp. 45–55, 2015.
dc.relation.referencesT. D. Hedberg, M. Bajaj, and J. A. Camelio, ‘‘Using graphs to link data across the product lifecycle for enabling smart manufacturing digital threads,’’ J. Comput. Inf. Sci. Eng., vol. 20, no. 1, pp. 1–15, Feb. 2020, doi: 10.1115/1.4044921.
dc.relation.referencesM. Helu and T. Hedberg, ‘‘Enabling smart manufacturing research and development using a product lifecycle test bed,’’ Proc. Manuf., vol. 1, pp. 86–97, Jan. 2015, doi: 10.1016/j.promfg.2015.09.066
dc.relation.referencesT. D. Hedberg, M. Bajaj, and J. A. Camelio, ‘‘Using graphs to link data across the product lifecycle for enabling smart manufacturing digital threads,’’ J. Comput. Inf. Sci. Eng., vol. 20, no. 1, Feb. 2020, doi: 10.1115/1.4044921.
dc.relation.referencesM. Helu, T. Hedberg, and A. B. Feeney, ‘‘Reference architecture to integrate heterogeneous manufacturing systems for the digital thread,’’ CIRP J. Manuf. Sci. Technol., vol. 19, pp. 191–195, Nov. 2017, doi: 10.1016/j.cirpj.2017.04.002.
dc.relation.referencesS. Kwon, L. V. Monnier, R. Barbau, and W. Z. Bernstein, ‘‘Enriching standards-based digital thread by fusing as-designed and as-inspected data using knowledge graphs,’’ Adv. Eng. Informat., vol. 46, Oct. 2020, Art. no. 101102, doi: 10.1016/j.aei.2020.101102.
dc.relation.referencesL. Sun, Z. Jiao, S. Wang, F. Jiang, and X. Li, ‘‘A consistency evaluation method for digital twins in manufacturing,’’ IEEE Access, vol. 13, pp. 109046–109056, 2025.
dc.relation.referencesD. B. Kim, P. Witherell, R. Lipman, and S. C. Feng, ‘‘Streamlining the additive manufacturing digital spectrum: A systems approach,’’ Additive Manuf., vol. 5, pp. 20–30, Jan. 2015, doi: 10.1016/j.addma.2014.10.004.
dc.relation.referencesA. R. Nassar and E. W. Reutzel, ‘‘A proposed digital thread for additive manufacturing,’’ Dept. Mech. Eng., Appl. Res. Lab., Pennsylvania State Univ., 2013.
dc.relation.referencesR. Bonnard, J.-Y. Hascoet, and P. Mognol, ‘‘Data model for additive manufacturing digital thread: State of the art and perspectives,’’ Int. J. Comput. Integr. Manuf., vol. 32, no. 12, pp. 1170–1191, Dec. 2019, doi: 10.1080/0951192x.2019.1690681.
dc.relation.referencesD. B. Kim, P. Witherell, Y. Lu, and S. Feng, ‘‘Toward a digital thread and data package for metals-additive manufacturing,’’ Smart Sustain. Manuf. Syst., vol. 1, no. 1, pp. 75–100, Feb. 2017, doi: 10.1520/ssms20160003.
dc.relation.referencesR. Bonnard, P. Mognol, and J.-Y. Hascoët, ‘‘A new digital chain for additive manufacturing processes,’’ Virtual Phys. Prototyping, vol. 5, no. 2, pp. 75–88, Jun. 2010, doi: 10.1080/17452751003696916.
dc.relation.referencesR. Bonnard, J.-Y. Hascoët, P. Mognol, and I. Stroud, ‘‘STEP-NC digital thread for additive manufacturing: Data model, implementation and validation,’’ Int. J. Comput. Integr. Manuf., vol. 31, no. 11, pp. 1141–1160, Nov. 2018, doi: 10.1080/0951192x.2018.1509130.
dc.relation.referencesR. Bonnard, J.-Y. Hascoët, P. Mognol, E. Zancul, and A. J. Alvares, ‘‘Hierarchical object-oriented model (HOOM) for additive manufacturing digital thread,’’ J. Manuf. Syst., vol. 50, pp. 36–52, Jan. 2019, doi: 10.1016/j.jmsy.2018.11.003.
dc.relation.referencesD. Mies, W. Marsden, and S. Warde, ‘‘Overview of additive manufacturing informatics: ‘A digital thread,’’’ Integrating Mater. Manuf. Innov., vol. 5, no. 1, pp. 114–142, Dec. 2016, doi: 10.1186/s40192-016- 0050-7.
dc.relation.referencesF. Belkadi, L. M. Vidal, A. Bernard, E. Pei, and E. M. Sanfilippo, ‘‘Towards an unified additive manufacturing product-process model for digital chain management purpose,’’ Proc. CIRP, vol. 70, pp. 428–433, Jan. 2018.
dc.relation.referencesJ. Xiao, N. Anwer, A. Durupt, J. Le Duigou, and B. Eynard, ‘‘Information exchange standards for design, tolerancing and additive manufacturing: A research review,’’ Int. J. Interact. Design Manuf. (IJIDeM), vol. 12, no. 2, pp. 495–504, May 2018, doi: 10.1007/s12008-017-0401-4.
dc.relation.referencesJ. Xiao and Y. Lei, ‘‘Enriching semantics of geometry features and parameters for additive manufacturing peculiar structure based on STEP standards,’’ Crystals, vol. 12, no. 8, p. 1154, Aug. 2022, doi: 10.3390/cryst12081154.
dc.relation.referencesE. Pei, M. Ressin, R. I. Campbell, B. Eynard, and J. Xiao, ‘‘Investigating the impact of additive manufacturing data exchange standards for re-distributed manufacturing,’’ Prog. Additive Manuf., vol. 4, no. 3, pp. 331–344, Sep. 2019, doi: 10.1007/s40964-019-00085-7
dc.relation.referencesT. Mahan, N. Meisel, C. McComb, and J. Menold, ‘‘Pulling at the digital thread: Exploring the tolerance stack up between automatic procedures and expert strategies in scan to print processes,’’ J. Mech. Design, vol. 141, no. 2, pp. 1–12, Feb. 2019, doi: 10.1115/1.4041927.
dc.relation.referencesE. Bonham, K. McMaster, E. Thomson, M. Panarotto, J. R. Müller, O. Isaksson, and E. Johansson, ‘‘Designing and integrating a digital thread system for customized additive manufacturing in multi-partner kayak production,’’ Systems, vol. 8, no. 4, p. 43, Nov. 2020.
dc.relation.referencesN. Gupta, A. Tiwari, S. T. S. Bukkapatnam, and R. Karri, ‘‘Additive manufacturing cyber-physical system: Supply chain cybersecurity and risks,’’ IEEE Access, vol. 8, pp. 47322–47333, 2020.
dc.relation.referencesM. Sjarov, N. Ceriani, T. Lechler, and J. Franke, ‘‘Building blocks for digitally integrated process chains in PBF-based additive manufacturing,’’ in Proc. Congr. German Academic Assoc. Prod. Technol., 2021, pp. 368–377.
dc.relation.referencesY. Xiong, Y. Tang, Q. Zhou, Y. Ma, and D. W. Rosen, ‘‘Intelligent additive manufacturing and design: State of the art and future perspectives,’’ Additive Manuf., vol. 59, Nov. 2022, Art. no. 103139.
dc.relation.referencesG. L. Knapp, B. Stump, L. Scime, A. Márquez Rossy, C. Joslin, W. Halsey, and A. Plotkowski, ‘‘Leveraging the digital thread for physics-based prediction of microstructure heterogeneity in additively manufactured parts,’’ Additive Manuf., vol. 78, Sep. 2023, Art. no. 103861.
dc.relation.referencesG. L. Knapp, S. T. Reeve, J. Coleman, M. Rolchigo, B. Stump, S. DeWitt, and A. Plotkowski, ‘‘Myna: Connecting powder bed fusion build data to simulation tools for digital twin applications,’’ Comput. Mater. Sci., vol. 258, Aug. 2025, Art. no. 114094.
dc.relation.referencesS. Karadgi, P. M. Bhovi, A. Y. Patil, K. Ramaiah, K. Venkateswarlu, and T. G. Langdon, ‘‘A conceptual framework towards the realization of in situ monitoring and control of end-to-end additive manufacturing process,’’ Micro Nanosystems, vol. 15, no. 2, pp. 92–101, Jun. 2023.
dc.relation.referencesS. C. Feng, A. Jones, and G. Shao, ‘‘Data requirements for digital twins in additive manufacturing,’’ in Manufacturing Equipment and Automation; Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability. New York, NY, USA: American Society of Mechanical Engineers, 2023.
dc.relation.referencesK. Poka, B. Merz, M. Epperlein, and K. Hilgenberg, ‘‘Integration of the whole digital chain in a unique file for PBF-LB/M: Practical implementation within a digital thread and its advantages,’’ in Proc. Int. Conf. Additive Manuf. Products Appl., 2024, pp. 91–114.
dc.relation.referencesJ. Xiao, N. Anwer, H. Huang, R. Bonnard, B. Eynard, C. Huang, and E. Pei, ‘‘Information exchange and knowledge discovery for additive manufacturing digital thread: A comprehensive literature review,’’ Int. J. Comput. Integr. Manuf., vol. 38, no. 8, pp. 1–26, Aug. 2025, doi: 10.1080/0951192x.2024.2387768.
dc.relation.referencesR. Furferi, ‘‘Integrating geometric dimensioning and tolerancing with additive manufacturing: A perspective,’’ Appl. Sci., vol. 15, no. 6, p. 3398, Mar. 2025.
dc.relation.referencesE. E. Rodriguez, R. Bonnard, and A. J. Álvares, ‘‘Proposal of an advanced data model for step-NC compliant additive manufacturing,’’ in Proc. 24th ABCM Int. Congr. Mech. Eng., 2017, pp. 1–16, doi: 10.26678/abcm.cobem2017.cob17-2435.
dc.relation.referencesE. Rodriguez, C. Riaño, A. Alvares, and R. Bonnard, ‘‘Design and dimensional synthesis of a linear delta robot with single legs for additive manufacturing,’’ J. Brazilian Soc. Mech. Sci. Eng., vol. 41, no. 11, pp. 1–16, Nov. 2019, doi: 10.1007/s40430-019-2039-6.
dc.relation.referencesC. Riaño, E. Rodriguez, and A. J. Alvares, ‘‘A closed-loop inspection architecture for additive manufacturing based on STEP standard,’’ IFAC-PapersOnLine, vol. 52, no. 13, pp. 2782–2787, 2019, doi: 10.1016/j.ifacol.2019.11.629.
dc.relation.referencesE. Rodriguez and A. Alvares, ‘‘A STEP-NC implementation approach for additive manufacturing,’’ Proc. Manuf., vol. 38, pp. 9–16, Jan. 2019. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/ S2351978920300020
dc.relation.referencesY. Qin, Q. Qi, P. J. Scott, and X. Jiang, ‘‘Status, comparison, and future of the representations of additive manufacturing data,’’ Comput.-Aided Design, vol. 111, pp. 44–64, Jun. 2019, doi: 10.1016/j.cad.2019.02.004
dc.relation.referencesA. Kumar, P. Kumar, R. K. Mittal, and H. Singh, Printing File Formats for Additive Manufacturing Technologies. Amsterdam, The Netherlands: Elsevier, 2023, pp. 87–102, doi: 10.1016/B978-0-323-91834-3.00006-5
dc.relation.references(2024). New Open Data Format Simplifies 3D Printing Process. Accessed: Oct. 5, 2025. [Online]. Available: https://spaener.com/en/article/newopen-data-format-simplifies-3d-printing-process
dc.relation.referencesStereolithography Interface Specification, 3D Systems, Rock Hill, SC, USA, 1989.
dc.relation.referencesSpecification for Additive Manufacturing File Format (AMF), Standard ISO/ASTM-52915, 2020.
dc.relation.references3d Manufacturing Format (3MF)–The File Format for 3D Printing, 3MF Consortium, San Francisco, CA, USA, 2014
dc.relation.referencesWavefront Advanced Visualiser Manual–appendix B1. Object Files (.obj), Wavefront Technologies, Coimbatore, India, 1995.
dc.relation.referencesIndustrial Automation Systems and Integration—Product Data Representation and Exchange—Part 1: Overview and Fundamental Principles, Standard 10303-1, 2024.
dc.relation.referencesIndustrial Automation Systems and Integration–Physical Device Control– Data Model for Computerized Numerical Controllers, Standard 14649-1, International Standard Organization, 2003.
dc.relation.referencesIndustrial Automation Systems and Integration–Product Data Representation and Exchange—Part 238: Application Protocol: Model Based Integrated Manufacturing, Standard 10303-238, International Standard Organization, 2022.
dc.relation.referencesA. J. Álvares, E. Rodriguez, C. I. Riaño Jaimes, J. S. Toquica, and J. C. E. Ferreira, ‘‘STEP-NC architectures for industrial robotic machining: Review, implementation and validation,’’ IEEE Access, vol. 8, pp. 152592–152610, 2020, doi: 10.1109/ACCESS.2020.3017561.
dc.relation.referencesC. I. R. Jaimes, A. J. Álvares, and C. A. Peña, ‘‘Kinematic compensation algorithm for reducing errors in a closed-loop manufacturing system,’’ IEEE Access, vol. 12, pp. 89493–89505, 2024
dc.relation.referencesSTEP-NC Standard–Third Edition, Standard ISO 10303-238, 2022. [Online]. Available: https://ap238.org/ap238e3
dc.relation.referencesF. A. Milaat, P. Witherell, M. Hardwick, H. Yeung, V. Ferrero, L. Monnier, and M. Brown, ‘‘STEP-NC process planning for powder bed fusion additive manufacturing,’’ J. Comput. Inf. Sci. Eng., vol. 22, no. 6, pp. 1–11, Dec. 2022, doi: 10.1115/1.4055855.
dc.relation.referencesV. B. P. RajratnaKharat, ‘‘Digital twin: Manufacturing excellence through virtual factory replication,’’ 3MF Consortium, 3D Manufacturing Format (3MF), 3D Printing, San Francisco, CA, USA, 2014. Accessed: Dec. 5, 2025. [Online]. Available: https://3mf.io
dc.relation.referencesE. H. Glaessgen and D. S. Stargel, ‘‘The digital twin paradigm for future NASA and U.S. Air force vehicles,’’ p. 1818, 2012
dc.relation.referencesF. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, ‘‘Digital twin in industry: Stateof-the-art,’’ IEEE Trans. Ind. Informat., vol. 15, no. 4, pp. 2405–2415, Apr. 2019, doi: 10.1109/TII.2018.2873186
dc.relation.referencesAutomation Systems and Integration–Digital Twin Framework for Manufacturing—Part 1: Overview and General Principles, Standard 23247-1, International Standard Organization, 2021.
dc.relation.referencesB. R. Barricelli, E. Casiraghi, and D. Fogli, ‘‘A survey on digital twin: Definitions, characteristics, applications, and design implications,’’ IEEE Access, vol. 7, pp. 167653–167671, 2019, doi: 10.1109/ACCESS.2019.2953499
dc.relation.referencesW. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, ‘‘Digital twin in manufacturing: A categorical literature review and classification,’’ IFAC-PapersOnLine, vol. 51, no. 11, pp. 1016–1022, 2018, doi: 10.1016/j.ifacol.2018.08.474.
dc.relation.referencesZ. Chen, K. Surendraarcharyagie, K. Granland, C. Chen, X. Xu, Y. Xiong, C. Davies, and Y. Tang, ‘‘Service oriented digital twin for additive manufacturing process,’’ J. Manuf. Syst., vol. 74, pp. 762–776, Jun. 2024, doi: 10.1016/j.jmsy.2024.04.015.
dc.relation.referencesY. Lu, C. Liu, K. I.-K. Wang, H. Huang, and X. Xu, ‘‘Digital twin-driven smart manufacturing: Connotation, reference model, applications and research issues,’’ Robot. Comput.-Integr. Manuf., vol. 61, Feb. 2020, Art. no. 101837. [Online]. Available: https://linkinghub. elsevier.com/retrieve/pii/S0736584519302480
dc.relation.referencesF. Tao and M. Zhang, ‘‘Digital twin shop-floor: A new shopfloor paradigm towards smart manufacturing,’’ IEEE Access, vol. 5, pp. 20418–20427, 2017, doi: 10.1109/ACCESS.2017.2756069
dc.relation.references(2016). Digital Thread and Digital Twin Demonstrations at Future of Flight. Accessed: Jan. 2, 2024. [Online]. Available: https://www.steptools. com/blog/20161005digitalthreaddemo/
dc.relation.referencesK. M. Alam and A. El Saddik, ‘‘C2PS: A digital twin architecture reference model for the cloud-based cyber-physical systems,’’ IEEE Access, vol. 5, pp. 2050–2062, 2017, doi: 10.1109/ACCESS.2017.2657006.
dc.relation.referencesS. Aheleroff, X. Xu, R. Y. Zhong, and Y. Lu, ‘‘Digital twin as a service (DTaaS) in industry 4.0: An architecture reference model,’’ Adv. Eng. Informat., vol. 47, Jan. 2021, Art. no. 101225, doi: 10.1016/j.aei.2020.101225.
dc.relation.referencesY. Zheng, S. Yang, and H. Cheng, ‘‘An application framework of digital twin and its case study,’’ J. Ambient Intell. Humanized Comput., vol. 10, no. 3, pp. 1141–1153, Mar. 2019, doi: 10.1007/s12652-018-0911-3
dc.relation.referencesM. Bevilacqua, E. Bottani, F. E. Ciarapica, F. Costantino, L. Di Donato, A. Ferraro, G. Mazzuto, A. Monteriu, G. Nardini, M. Ortenzi, M. Paroncini, M. Pirozzi, M. Prist, E. Quatrini, M. Tronci, and G. Vignali, ‘‘Digital twin reference model development to prevent Operators’ risk in process plants,’’ Sustainability, vol. 12, no. 3, p. 1088, Feb. 2020, doi: 10.3390/su12031088.
dc.relation.referencesQ. Qi, F. Tao, T. Hu, N. Anwer, A. Liu, Y. Wei, L. Wang, and A. Y. C. Nee, ‘‘Enabling technologies and tools for digital twin,’’ J. Manuf. Syst., vol. 58, pp. 3–21, Jan. 2021, doi: 10.1016/j.jmsy.2019.10.001.
dc.relation.referencesÁ. Bárkányi, T. Chován, S. Németh, and J. Abonyi, ‘‘Modelling for digital twins—Potential role of surrogate models,’’ Processes, vol. 9, no. 3, p. 476, Mar. 2021, doi: 10.3390/pr9030476.
dc.relation.referencesG. Shao and M. Helu, ‘‘Framework for a digital twin in manufacturing: Scope and requirements,’’ Manuf. Lett., vol. 24, pp. 105–107, Apr. 2020, doi: 10.1016/j.mfglet.2020.04.004
dc.relation.referencesAutomation Systems and Integration–Digital Twin Framework for Manufacturing—Part 2: Reference Architecture, Standard ISO 23247-2, 2021
dc.relation.referencesAutomation Systems and Integration–Digital Twin Framework for Manufacturing—Part 3: Digital Representation of Manufacturing Elements, Standard ISO 23247-3, 2021.
dc.relation.referencesAutomation Systems and Integration–digital Twin Framework for Manufacturing—Part 4: Information Exchange, Standard ISO 23247-4, 2021
dc.relation.referencesAutomation Systems and Integration–digital Twin Framework for Manufacturing—Part 5: Digital Thread for Digital Twin, Standard ISO 23247-5, 2024
dc.relation.referencesAutomation Systems and Integration–digital Twin Framework for Manufacturing—part 6: Digital Twin Composition, Standard ISO 23247-6, 2024.
dc.relation.referencesT. DebRoy, W. Zhang, J. Turner, and S. S. Babu, ‘‘Building digital twins of 3D printing machines,’’ Scripta Mater., vol. 135, pp. 119–124, Jul. 2017, doi: 10.1016/j.scriptamat.2016.12.005
dc.relation.referencesG. L. Knapp, T. Mukherjee, J. S. Zuback, H. L. Wei, T. A. Palmer, A. De, and T. DebRoy, ‘‘Building blocks for a digital twin of additive manufacturing,’’ Acta Mater., vol. 135, pp. 390–399, Aug. 2017, doi: 10.1016/j.actamat.2017.06.039
dc.relation.referencesT. Mukherjee and T. DebRoy, ‘‘A digital twin for rapid qualification of 3D printed metallic components,’’ Appl. Mater. Today, vol. 14, pp. 59–65, Mar. 2019, doi: 10.1016/j.apmt.2018.11.003.
dc.relation.referencesH. L. Wei, T. Mukherjee, W. Zhang, J. S. Zuback, G. L. Knapp, A. De, and T. DebRoy, ‘‘Mechanistic models for additive manufacturing of metallic components,’’ Prog. Mater. Sci., vol. 116, Feb. 2021, Art. no. 100703, doi: 10.1016/j.pmatsci.2020.100703.
dc.relation.referencesT. Shen and B. Li, ‘‘Digital twins in additive manufacturing: A state-ofthe-art review,’’ Int. J. Adv. Manuf. Technol., vol. 131, no. 1, pp. 63–92, Mar. 2024, doi: 10.1007/s00170-024-13092-y
dc.relation.referencesS. B. Amor, N. Elloumi, A. Eltaief, B. Louhichi, N. H. Alrasheedi, and A. Seibi, ‘‘Digital twin implementation in additive manufacturing: A comprehensive review,’’ Processes, vol. 12, no. 6, p. 1062, May 2024, doi: 10.3390/pr12061062.
dc.relation.referencesR. Reisch, T. Hauser, T. Kamps, and A. Knoll, ‘‘Robot based wire arc additive manufacturing system with context-sensitive multivariate monitoring framework,’’ Proc. Manuf., vol. 51, pp. 732–739, Jan. 2020, doi: 10.1016/j.promfg.2020.10.103.
dc.relation.referencesH. Mu, F. He, L. Yuan, H. Hatamian, P. Commins, and Z. Pan, ‘‘Online distortion simulation using generative machine learning models: A step toward digital twin of metallic additive manufacturing,’’ J. Ind. Inf. Integr., vol. 38, Mar. 2024, Art. no. 100563, doi: 10.1016/j.jii.2024.100563.
dc.relation.referencesS. Hartmann, O. Murua, J. I. Arrizubieta, A. Lamikiz, and P. Mayr, ‘‘Digital twin of the laser-DED process based on a multiscale approach,’’ Simul. Model. Pract. Theory, vol. 132, Apr. 2024, Art. no. 102881, doi: 10.1016/j.simpat.2023.102881.
dc.relation.referencesA. W. Malik, M. A. Mahmood, and F. Liou, ‘‘Digital twin–driven optimization of laser powder bed fusion processes: A focus on lack-offusion defects,’’ Rapid Prototyping J., vol. 30, no. 10, pp. 1977–1988, Nov. 2024, doi: 10.1108/rpj-02-2024-0091.
dc.relation.referencesG. Shao, ‘‘Use case scenarios for digital twin implementation based on iso 23247,’’ Adv. Manuf. Series (NIST AMS), Syst. Integr. Division, Eng. Lab., National Inst. Standards Technol., May 2021. [Online]. Available: https://doi.org/10.6028/NIST.AMS.400-2
dc.relation.referencesD. Bong Kim, G. Shao, and G. Jo, ‘‘A digital twin implementation architecture for wire + arc additive manufacturing based on ISO 23247,’’ Manuf. Lett., vol. 34, pp. 1–5, Oct. 2022, doi: 10.1016/j.mfglet.2022.08.008
dc.relation.referencesM.-S. Kang, D.-H. Lee, M. S. Bajestani, D. B. Kim, and S. D. Noh, ‘‘Edge computing-based digital twin framework based on ISO 23247 for enhancing data processing capabilities,’’ Machines, vol. 13, no. 1, p. 19, Dec. 2024, doi: 10.3390/machines13010019.
dc.relation.referencesJ. V. A. Cabral, E. A. R. Gasca, and A. J. Alvares, ‘‘Digital twin implementation for machining center based on ISO 23247 standard,’’ IEEE Latin Amer. Trans., vol. 21, no. 5, pp. 628–635, May 2023, doi: 10.1109/TLA.2023.10130834.
dc.relation.referencesJ. V. A. Cabral, A. J. Álvares, and G. Caribé de Carvalho, ‘‘Digital twin implementation for an additive manufacturing robotic cell based on the ISO 23247 standard,’’ IEEE Latin Amer. Trans., vol. 22, no. 8, pp. 651–658, Aug. 2024, doi: 10.1109/TLA.2024.10620386.
dc.relation.referencesB. Wallner, B. Zwölfer, T. Trautner, and F. Bleicher, ‘‘Digital twin development and operation of a flexible manufacturing cell using ISO 23247,’’ Proc. CIRP, vol. 120, pp. 1149–1154, Jan. 2023, doi: 10.1016/j.procir.2023.09.140.
dc.relation.referencesG.-N. Le, T. V. Nguyen, V.-D. Tran, N.-T. Nguyen, X. Tang, and T. Hoang, ‘‘Multi-services digital twin for modular production system based on ISO 23247 and Web server,’’ in Proc. 1st Int. Conf. Sustainability Emerg. Technol. Smart Manufacturings, 2025, pp. 679–689, doi: 10.1007/978- 981-97-7083-0_68
dc.relation.referencesV. Melo, J. Barbosa, G. Mota, F. D. L. Prieta, and P. Leitao, ‘‘Design of an ISO 23247 compliant digital twin for an automotive assembly line,’’ in Proc. IEEE 7th Int. Conf. Ind. Cyber-Phys. Syst. (ICPS), May 2024, pp. 1–6, doi: 10.1109/icps59941.2024.10640052.
dc.relation.referencesG. Caiza and R. Sanz, ‘‘Immersive digital twin under ISO 23247 applied to flexible manufacturing processes,’’ Appl. Sci., vol. 14, no. 10, p. 4204, May 2024, doi: 10.3390/app14104204.
dc.relation.referencesA. J. Alvares, E. Rodriguez, and B. Figueroa, ‘‘Digital-twin-enabled process monitoring for a robotic additive manufacturing cell using wirebased laser metal deposition,’’ Processes, vol. 13, no. 8, p. 2335, Jul. 2025
dc.relation.referencesT. B. Minh, D. X. Phu, Q. H. Nguyen, K. H. V. Nguyen, and T. T. T. Phan, ‘‘A digital twin implementation framework for a collaborative robot based on iso 23247,’’ in Proc. Int. Conf. Sustain. Energy Technol., 2024, pp. 747–755, doi: 10.1007/978-981-97-1868-9_74.
dc.relation.referencesA. Sobowale, L. Freitas, A. Lima, P. Marujo, F. Pereira, and H. Lopes, ‘‘Leveraging the ISO 23247 framework for the development of digital twins of stacker cranes,’’ in Innovations in Industrial Engineering III (Lecture Notes in Mechanical Engineering), J. Machado et al., Eds., Springer, 2024, pp. 36–50, doi: 10.1007/978-3-031-61582-5_4.
dc.relation.referencesJ. Cederbladh, E. Ferko, and E. Lundin, ‘‘Towards adopting a digital twin framework (ISO 23247) for battery systems,’’ in Proc. 21st Int. Conf. Inf. Technology-New Generat., 2024, pp. 397–404, doi: 10.1007/978-3-031- 56599-1_51.
dc.relation.referencesA. Shtofenmakher and G. Shao, ‘‘Adaptation of ISO 23247 to aerospace digital twin applications-on-orbit collision avoidance and space-based debris detection,’’ Aerosp. Res. Central, vol. 2024, pp. 8–12, Jan. 2024.
dc.relation.referencesM. Helu, A. Joseph, and T. Hedberg, ‘‘A standards-based approach for linking as-planned to as-fabricated product data,’’ CIRP Ann., vol. 67, no. 1, pp. 487–490, 2018, doi: 10.1016/j.cirp.2018.04.039.
dc.relation.referencesIndustrial Automation Systems and Integration–Product Data Representation and Exchange—Part 203: Application Protocol: Configuration Controlled 3D Design of Mechanical Parts and Assemblies, Standard 10303-203, 2011.
dc.relation.referencesIndustrial Automation Systems and Integration–Product Data Representation and Exchange–Part 214: Application Protocol: Core Data for Automotive Mechanical Design Processes, Standard 10303-214, 2010.
dc.relation.referencesIndustrial Automation Systems and Integration–Product Data Representation and Exchange–Part 242: Application Protocol: Managed Model-based 3D Engineering, Standard 10303-242, International Standard Organization, 2022.
dc.relation.referencesIndustrial Automation Systems and Integration–Product Data Representation and Exchange—Part 224: Application Protocol: Mechanical Product Definition for Process Planning Using Machining Features, Standard 10303-224, International Standard Organization, 2006.
dc.relation.referencesIndustrial Automation Systems and Integration–Physical Device Control– Data Model for Computerized Numerical Controllers - Part 10: General Process Data, Standard 14649-10, International Standard Organization, 2004.
dc.relation.referencesIndustrial Automation Systems and Integration–Physical Device Control– Data Model for Computerized Numerical Controllers–Part 17: Process Data for Additive Manufacturing, Standard 14649-17, International Standard Organization, 2020.
dc.relation.referencesMTConnect Standard, AMT-The Assoc. Manuf. Technol., McLean, VA, USA, 2018.
dc.relation.referencesOPC Foundation—The Industrial Interoperability Standard, OPC Unified Architecture, Scottsdale, AZ, USA, 2008.
dc.relation.referencesInformation Technology—Message Queuing Telemetry Transport (MQTT), Standard 20922, International Standard Organization, 2016.
dc.relation.referencesI. 10303-219, ‘‘Industrial automation systems and integration—Product data representation and exchange—Part 219: Application protocol: Dimensional inspection information exchange,’’ International Standard Organization, 2007.
dc.relation.referencesAutomation Systems and Integration–Quality Information Framework (QIF)–An Integrated Model for Manufacturing Quality Information, Standard 23952, International Standard Organization, 2020.
dc.relation.references(2015). Reference Architecture Model Industrie 4.0. [Online]. Available: https://www.zvei.org/fileadmin/ userupload/PresseundMedien/Publikationen/2016/januar/ GMAStatusReportReferenceArchtitectureModelIndustrie4.0RAMI4. 0/GMA-Status-Report-RAMI-40-July-2015.pdf
dc.relation.referencesI. 23704-1, ‘‘General requirements for cyber-physically controlled smart machine tool systems (CPSMT) - Part 1: Overview and fundamental principles,’’ International Standard Organization, 2022
dc.relation.referencesGeneral Requirements for Cyber-physically Controlled Smart Machine Tool Systems (CPSMT)–Part 3: Reference Architecture of CPSMT for Additive Manufacturing, Standard 23704-3, International Standard Organization, 2023.
dc.relation.referencesE. Rodriguez. STEP-NC Additive. Accessed: Mar. 31, 2024. [Online]. Available: https://github.com/EfrainRodriguez/additive-manufacturingstep-nc
dc.relation.referencesRepRap Machine Model Prusa Mendel for STEP-NC Machine. Accessed: Mar. 31, 2024. [Online]. Available: https://github.com/StepNcLadprer/ RepRap-machine-model-Prusa-Mendel-for-STEP-NC-Machine
dc.relation.referencesE. Rodriguez, J. P. Rodriguez, A. J. Alvares, C. Riaño, and L. E. D. Oliveira, ‘‘Developing a MTConnect framework for RepRap additive manufacturing machines,’’ IFAC-PapersOnLine, vol. 52, no. 13, pp. 2507–2512, 2019. [Online]. Available: https://linkinghub.elsevier. com/retrieve/pii/S2405896319315708
dc.relation.referencesJ. Lee and H. Su, ‘‘A unified industrial large knowledge model framework in industry 4.0 and smart manufacturing,’’ Int. J. AI for Mater. Design, vol. 1, no. 2, p. 41, Jul. 2024.
dc.rights.licenseAtribución 4.0 Internacional (CC BY 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc670 - Manufactura
dc.subject.lembManufactura digital
dc.subject.lembInteroperabilidad de sistemas
dc.subject.lembInternet de las cosas (IIoT)
dc.subject.lembAutomatización industrial
dc.subject.lembDigital manufacturing
dc.subject.lembSystems interoperability
dc.subject.lembInternet of Things (IIoT)
dc.subject.lembIndustrial automation
dc.subject.ocde2. Ingeniería y Tecnología::2C. Ingeniería Mecánica::2C01. Ingeniería mecánica
dc.subject.ocde2. Ingeniería y Tecnología::2E. Ingeniería de los Materiales::2E01. Ingeniería mecánica
dc.subject.odsODS 9: Industria, innovación e infraestructura. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
dc.subject.odsODS 12: Producción y consumo responsables. Garantizar modalidades de consumo y producción sostenibles
dc.subject.proposalAdditive Manufacturing
dc.subject.proposalDigital Thread
dc.subject.proposalDigital Twins
dc.subject.proposalSTEP-NC
dc.subject.proposalISO 23247
dc.subject.proposalISO 10303-238
dc.subject.proposalData Integration
dc.subject.proposalInteroperability
dc.subject.proposalInteroperability
dc.subject.proposalLaser Metal Deposition
dc.titleToward a digital ecosystem for additive manufacturing driven by standards-based digital thread and digital twins
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_18cf
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication645833b4-d139-46af-a054-b02f41055694
relation.isAuthorOfPublication.latestForDiscovery645833b4-d139-46af-a054-b02f41055694

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Toward_a_Digital_Ecosystem_for_Additive_Manufacturing_Driven_by_Standards-Based_Digital_Thread_and_Digital_Twins.pdf
Tamaño:
5.93 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: