Publicación: Study of the properties of a composite material Fe78Si9B13 / GNP in an epoxy matrix
| dc.contributor.author | Pagnola, Marcelo Rubén | eng |
| dc.contributor.author | Faig, Javier | eng |
| dc.contributor.author | Ferrari, Sergio | eng |
| dc.contributor.author | Martinez Garcia, Ricardo | eng |
| dc.contributor.author | Useche Vivero, Jairo Francisco | |
| dc.date.accessioned | 2024-06-30 11:55:40 | |
| dc.date.accessioned | 2025-05-21T19:15:50Z | |
| dc.date.available | 2024-06-30 11:55:40 | |
| dc.date.issued | 2024-06-30 | |
| dc.description.abstract | This study investigates the properties of a composite material obtained by mixing Fe78Si9B13 metallic powders (at %) with graphene nanoplates (GNP) in an epoxy matrix. Four composite types were created with GNP weight proportions of 0%, 0.5%, 1.0%, and 1.5%. The composites were embedded in transparent epoxy with weight proportions of 10%, 15%, and 20%, and then filled into 7 x 20 mm cylindrical probes. Twelve samples were prepared, and another 12 samples were subjected to a longitudinal magnetic field of 1 kG. All samples were tested with a Universal Testing Machine (Model WDW 10E) up to a maximum force of 20 kN. The experiment recorded deformation (ΔH) vs. charge force. Most samples showed a maximum compression resistance of 390 MPa, except for a few that did not exceed 100 MPa. The magnetically oriented samples showed a greater elastic limit in the range of 200 to 270 MPa. Optical microscopy was used to observe the ordering of the particles after the application of the magnetic field. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction were used to characterize the structure of the composite components. A vibrating sample magnetometer (VSM) was used to characterize the magnetic behavior of the metallic powders in the composite. | eng |
| dc.format.mimetype | application/pdf | eng |
| dc.identifier.doi | 10.32397/tesea.vol5.n1.593 | |
| dc.identifier.eissn | 2745-0120 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/13536 | |
| dc.identifier.url | https://doi.org/10.32397/tesea.vol5.n1.593 | |
| dc.language.iso | eng | eng |
| dc.publisher | Universidad Tecnológica de Bolívar | eng |
| dc.relation.bitstream | https://revistas.utb.edu.co/tesea/article/download/593/393 | |
| dc.relation.citationedition | Núm. 1 , Año 2024 : Transactions on Energy Systems and Engineering Applications | eng |
| dc.relation.citationendpage | 12 | |
| dc.relation.citationissue | 1 | eng |
| dc.relation.citationstartpage | 1 | |
| dc.relation.citationvolume | 5 | eng |
| dc.relation.ispartofjournal | Transactions on Energy Systems and Engineering Applications | eng |
| dc.relation.references | Fabiana Morales, Marcelo Pagnola, Juan Muriel, and Leandro Socolovsky. Molienda mecánica sobre cintas magnéticas blandas de fe78si9b13 con molino de bolas ortorrómbico de fabricación propia. Revista SAM N°1, page 61–67, 2020. [2] Da-guo Jiang and Zhao-hui Liu. Preparation and piezomagnetic effect of FeSiB amorphous powders /IIR composite film. In 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, pages 268–270, 2010. [3] M. Pagnola, M. Malmoria, and M. Barone. Biot number behaviour in the chill block melt spinning (cbms) process. Applied Thermal Engineering, 103:807–811, 2016. [4] Marcelo R. Pagnola, Mariano Malmoria, Marcelo Barone, and Hugo Sirkin. Analysis of fe78si9b13 ( Multidiscipline Modeling in Materials and Structures, 10(4):511–524, Nov 2014. [5] N I C Berhanuddin, I Zaman, S A M Rozlan, M A A Karim, B Manshoor, A Khalid, S W Chan, and Q Meng. Enhancement of mechanical properties of epoxy/graphene nanocomposite. Journal of Physics: Conference Series, 914(1):012036, oct 2017. [6] M. R. Pagnola, F. Morales, P. Tancredi, and L. M. Socolovsky. Radial Distribution Function Analysis and Molecular Simulation of Graphene Nanoplatelets Obtained by Mechanical Ball Milling. JOM, 73(8):2471–2478, jan 2 2021. Transactions on Energy Systems and Engineering Applications, 5(1): 593, 2024 12 of 12 [7] MA Wenshi, Zhou Junwen, and Cheng Shunxi. Preparation and characterization of graphene. Journal of Chemical Engineering of Chinese Universities, 24(4):719–722, 2010. [8] J. Kováˇcik and Š. Emmer. Cross property connection between the electric and the thermal conductivities of copper graphite composites. International Journal of Engineering Science, 144:103130, 11 2019. [9] M. Pagnola, J. Useche V., and R. Martinez García. Obtención de Fe78Si9B13/GNPL composite: Un estudio de propiedades. 21st LACCEI International Multi-Conference for Engineering, Education, and Technology, (Buenos Aires, Argentina)., jul 18 2023. [10] I. Y. Jeon, Y. R. Shin, G. J. Sohn, H. J. Choi, S. Y. Bae, J. Mahmood, S. M. Jung, J. M. Seo, M. J. Kim, D. Wook Chang, L. Dai, and J. B. Baek. Edge-carboxylated graphene nanosheets via ball milling. Proceedings of the National Academy of Sciences, 109(15):5588–5593, mar 27 2012. [11] D14 Committee et al. Test method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading (metal-to-metal). ASTM International, 2019. [12] Y. Dong, Z. Li, M. Liu, C. Chang, F. Li, and X. M. Wang. The effects of field annealing on the magnetic properties of FeSiB amorphous powder cores. Materials Research Bulletin, 96:160–163, 12 2017. [13] MC MORRIS, HF MCMURDIE, EH EVANS, B PARETZKIN, HS PARKER, NP PYRROS, and C HUBBARD. Standard x-ray diffraction power patterns: Section 20- data for 71 substances[final report]. 1984. [14] J. Zhang and F. Guyot. Thermal equation of state of iron and Fe0.91Si0.09. Physics and Chemistry of Minerals, 26(3):206–211, 1999. [15] CR Hubbard. Standard x-ray diffraction powder patterns: section 18—data for 58 substances. National Bureau of Standards Monogr, 1981. [16] G. Huang, C. Lv, J. He, X. Zhang, C. Zhou, P. Yang, Y. Tan, and H. Huang. Study on Preparation and Characterization of Graphene Based on Ball Milling Method. Journal of Nanomaterials, 2020:1–11, 2020. | eng |
| dc.rights | Marcelo Ruben Pagnola, Jairo Useche, Javier Faig, Sergio Ferrari, Ricardo Martinez Garcia - 2024 | eng |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | eng |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | eng |
| dc.rights.creativecommons | This work is licensed under a Creative Commons Attribution 4.0 International License. | eng |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | eng |
| dc.source | https://revistas.utb.edu.co/tesea/article/view/593 | eng |
| dc.subject | Polvos Magnéticos | eng |
| dc.subject | Nanoplacas de Grafeno | eng |
| dc.subject | Composite | eng |
| dc.subject | Deformación | eng |
| dc.subject | Compresión | eng |
| dc.subject | Modulo Elasticidad | eng |
| dc.subject | Esfuerzos | eng |
| dc.title | Study of the properties of a composite material Fe78Si9B13 / GNP in an epoxy matrix | spa |
| dc.title.translated | Study of the properties of a composite material Fe78Si9B13 / GNP in an epoxy matrix | spa |
| dc.type | Artículo de revista | spa |
| dc.type.coar | http://purl.org/coar/resource_type/c_6501 | eng |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | eng |
| dc.type.content | Text | eng |
| dc.type.driver | info:eu-repo/semantics/article | eng |
| dc.type.local | Journal article | eng |
| dc.type.version | info:eu-repo/semantics/publishedVersion | eng |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 650842d2-583f-4e5a-92aa-2985c42d9ed8 | |
| relation.isAuthorOfPublication.latestForDiscovery | 650842d2-583f-4e5a-92aa-2985c42d9ed8 |