Publicación:
Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems

datacite.rightshttp://purl.org/coar/access_right/c_abf2spa
dc.audienceInvestigadoresspa
dc.contributor.authorRodrigues, Fagner B.
dc.contributor.authorMuentes Acevedo, Jeovanny De Jesús
dc.date.accessioned2021-07-29T19:26:35Z
dc.date.available2021-07-29T19:26:35Z
dc.date.issued2020-10-07
dc.date.submitted2021-07-29
dc.description.abstractIn this paper we extend the definitions of mean dimension and metric mean dimension for non-autonomous dynamical systems. We show some properties of this extension and furthermore some applications to the mean dimension and metric mean dimension of single continuous maps.spa
dc.format.mimetypeapplication/pdfspa
dc.format.size27 páginas
dc.identifier.citationRodrigues, F.B., Acevedo, J.M. Mean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systems. J Dyn Control Syst (2021). https://doi.org/10.1007/s10883-021-09541-6spa
dc.identifier.doihttps://doi.org/10.1007/s10883-021-09541-6
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/10338
dc.language.isoengspa
dc.publisher.placeCartagena de Indiasspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.ccAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.sourceSpringer Science+Business Media, LLC, part of Springer Nature 2021spa
dc.subject.keywordsNon-autonomous dynamical systemsspa
dc.subject.keywordsMean dimensionspa
dc.subject.keywordsMetric mean dimensionspa
dc.subject.keywordsTopological entropyspa
dc.titleMean Dimension and Metric Mean Dimension for Non-autonomous Dynamical Systemsspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccessspa
dcterms.bibliographicCitationFreitas AC, Freitas JM, Vaienti S. Extreme value laws for non stationary processes generated by sequential and random dynamical systems. Annales de l’Institut Henri Poincaré, probabilités et statistiques; 2017. Institut Henri Poincaré.spa
dcterms.bibliographicCitationGromov M. Topological invariants of dynamical systems and spaces of holomorphic maps: I. Math Phys Anal Geom 1999;2(4):323–415.spa
dcterms.bibliographicCitationGutman Y, Tsukamoto M. 2015. Embedding minimal dynamical systems into Hilbert cubes. arXiv:1511.01802.spa
dcterms.bibliographicCitationKatok A, Hasselblatt B, Vol. 54. Introduction to the modern theory of dynamical systems. Cambridge: Cambridge University Press; 1995.spa
dcterms.bibliographicCitationKawabata T, Dembo A. The rate-distortion dimension of sets and measures. IEEE Trans Inf Theory 1994;40(5):1564–72.spa
dcterms.bibliographicCitationKloeckner B. Optimal transport and dynamics of expanding circle maps acting on measures. Ergodic Theory Dyn Syst 2013;33(2):529–48.spa
dcterms.bibliographicCitationKolyada S, Snoha L. Topological entropy of nonautonomous dynamical systems. Random Comput Dyn 1996;4(2):205.spa
dcterms.bibliographicCitationLi H. Sofic mean dimension. Adv Math 2013;244:570–604.spa
dcterms.bibliographicCitationLindenstrauss E. Mean dimension, small entropy factors and an embedding theorem. Publ Math Inst des Hautes Études Scientifiques 1999;89(1):227–262spa
dcterms.bibliographicCitationLindenstrauss E, Weiss B. Mean topological dimension. Israel J Math 2000;115(1):1–24.spa
dcterms.bibliographicCitationLindenstrauss E, Tsukamoto M. From rate distortion theory to metric mean dimension: variational principle. IEEE Trans Inf Theory 2018;64(5):3590–609.spa
dcterms.bibliographicCitationLindenstrauss E, Tsukamoto M. Mean dimension and an embedding problem: an example. Israel J Math 2014;199(5–2):573–84.spa
dcterms.bibliographicCitationMisiurewicz M. Horseshoes for continuous mappings of an interval. Dynamical systems. Berlin: Springer; 2010. p. 125–35.spa
dcterms.bibliographicCitationMuentes J. On the continuity of the topological entropy of non-autonomous dynamical systems. Bull Braz Math Soc New Ser 2018;49(1):89–106.spa
dcterms.bibliographicCitationStadlbauer M. Coupling methods for random topological Markov chains. Ergodic Theory Dyn Syst 2017;37(3):971–94.spa
dcterms.bibliographicCitationVelozo A, Velozo R. 2017. Rate distortion theory, metric mean dimension and measure theoretic entropy. arXiv:1707.05762.spa
dcterms.bibliographicCitationYano K. A remark on the topological entropy of homeomorphisms. Invent Math 1980;59(3):215–220.spa
dcterms.bibliographicCitationZhu Y, et al. Entropy of nonautonomous dynamical systems. J Korean Math Soc 2012;49(1):165–185.spa
dspace.entity.typePublication
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
relation.isAuthorOfPublication0aab56f2-0cbd-4150-8974-a2cc9996e481
relation.isAuthorOfPublication.latestForDiscovery0aab56f2-0cbd-4150-8974-a2cc9996e481

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Fagner and Jeovanny_Jeovanny De Jesus Mu.pdf
Tamaño:
887.95 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.11 KB
Formato:
Item-specific license agreed upon to submission
Descripción: