Publicación: Geomagnetic disturbances and grid vulnerability: Correlating storm intensity with power system failures
| dc.contributor.author | González Figueroa, Mauro A. | |
| dc.contributor.author | Herrera Acevedo, Daniel D. | |
| dc.contributor.author | Sierra Porta, David | |
| dc.date.accessioned | 2026-02-17T13:04:31Z | |
| dc.date.issued | 2025-07-25 | |
| dc.description | Incluye gráficos | |
| dc.description.abstract | Geomagnetic storms represent a critical yet sometimes overlooked factor affecting the reliability of modern power systems. This study examines the relationship between geomagnetic storm activity—characterized by the Dst index and categorized into weak, moderate, strong, severe, and extreme intensities—and reported power outages of unknown or unusual origin in the United States from 2006 to 2023. Outage data come from the DOE OE-417 Annual Summaries, while heliospheric and solar wind parameters (including proton density, plasma speed, and the interplanetary magnetic field) were obtained from NASA’s OMNIWeb database. Results indicate that years with a higher total count of geomagnetic storms, especially those featuring multiple strong or severe events, exhibit elevated incidences of unexplained power interruptions. Correlation analyses further reveal that increasingly negative Dst values, enhanced solar wind velocity, and higher alpha/proton ratios align with greater numbers of outages attributed to unknown causes, underscoring the pivotal role of solar wind–magnetosphere coupling. A simple regression model confirms that storm intensity and average magnetic field strength are statistically significant predictors of unexplained outages, more so than broad indicators such as sunspot number alone. These findings highlight the importance of monitoring high-intensity geomagnetic storms and associated heliospheric variables to mitigate potential risks. Greater attention to space weather impacts and improved reporting of outage causes could bolster grid resilience, helping operators anticipate and manage disruptions linked to geomagnetic disturbances. | |
| dc.format.extent | 17 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Figueroa MG, Acevedo DDH, Porta DS (2025) Geomagnetic disturbances and grid vulnerability: Correlating storm intensity with power system failures. PLoS One 20(7): e0327716. https://doi.org/10.1371/journal.pone.0327716 | |
| dc.identifier.doi | 10.1371/journal.pone.0327716 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/14324 | |
| dc.relation.references | Jasi¯unas J, Lund PD, Mikkola J. Energy system resilience–A review. Renewable and Sustainable Energy Reviews. 2021;150:111476. doi:10.1016/j.rser.2021.111476. | |
| dc.relation.references | Umunnakwe A, Huang H, Oikonomou K, Davis K. Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges. Renewable and Sustainable Energy Reviews. 2021;149:111252. doi:10.1016/j.rser.2021.111252. | |
| dc.relation.references | Xu L, Guo Q, Sheng Y, Muyeen S, Sun H. On the resilience of modern power systems: A comprehensive review from the cyber-physical perspective. Renewable and Sustainable Energy Reviews. 2021;152:111642. doi:10.1016/j.rser.2021.111642 | |
| dc.relation.references | Shi Q, Liu W, Zeng B, Hui H, Li F. Enhancing distribution system resilience against extreme weather events: Concept review, algorithm summary, and future vision. International Journal of Electrical Power & Energy Systems. 2022;138:107860. doi:10.1016/j.ijepes.2021.107860 | |
| dc.relation.references | Tari AN, Sepasian MS, Kenari MT. Resilience assessment and improvement of distribution networks against extreme weather events. International Journal of Electrical Power & Energy Systems. 2021;125:106414. doi:10.1016/j.ijepes.2020.106414. | |
| dc.relation.references | Zografopoulos I, Ospina J, Liu X, Konstantinou C. Cyber-physical energy systems security: Threat modeling, risk assessment, resources, metrics, and case studies. IEEE Access. 2021;9:29775–29818. doi:10.1109/ACCESS.2021.3058403 | |
| dc.relation.references | Sandelic M, Peyghami S, Sangwongwanich A, Blaabjerg F. Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges. Renewable and Sustainable Energy Reviews. 2022;159:112127. doi:10.1016/j.rser.2022.112127 | |
| dc.relation.references | Li H, Soares CG. Assessment of failure rates and reliability of floating offshore wind turbines. Reliability Engineering & System Safety. 2022;228:108777. doi:10.1016/j.ress.2022.108777 | |
| dc.relation.references | Lewis Z, Wild J, Allcock M, Walach MT. Assessing the impact of weak and moderate geomagnetic storms on UK power station transformers. Space Weather. 2022;20(4):e2021SW003021. doi:10.1029/2021SW003021. | |
| dc.relation.references | Subritzky S, Lapthorn A, Hardie S, Manus DM, Rodger C, Dalzell M. Assessment of space weather impacts on New Zealand power transformers using dissolved gas analysis. Space Weather. 2024;22(2):e2023SW003607. doi:10.1029/2023SW003607. | |
| dc.relation.references | Gosling JT. The solar flare myth. Journal of Geophysical Research: Space Physics. 1993;98(A11):18937–18949. doi:10.1029/93JA01896. | |
| dc.relation.references | Nitta NV, Mulligan T, Kilpua EK, Lynch BJ, Mierla M, O’Kane J, et al. Understanding the origins of problem geomagnetic storms associated with “stealth” coronal mass ejections. Space Science Reviews. 2021;217(8):82. doi:10.1007/s11214-021-00857-0. | |
| dc.relation.references | Reyes PI, Pinto VA, Moya PS. Geomagnetic storm occurrence and their relation with solar cycle phases. Space Weather. 2021;19(9):e2021SW002766. doi:10.1029/2021SW002766. | |
| dc.relation.references | Oliveira DM, Ngwira CM. Geomagnetically induced currents: Principles. Brazilian Journal of Physics. 2017;47:552–560. doi:10.1007/s13538-017-0523-y. | |
| dc.relation.references | Hajra R. Intense geomagnetically induced currents (GICs): Association with solar and geomagnetic activities. Solar Physics. 2022;297(1):14. doi:10.1007/s11207-021-01945-8. | |
| dc.relation.references | Love JJ, Lucas GM, Rigler EJ, Murphy BS, Kelbert A, Bedrosian PA. Mapping a magnetic superstorm: March 1989 geoelectric hazards and impacts on United States power systems. Space Weather. 2022;20(5):e2021SW003030. doi:10.1029/2021SW003030. | |
| dc.relation.references | Rajput VN, Boteler DH, Rana N, Saiyed M, Anjana S, Shah M. Insight into impact of geomagnetically induced currents on power systems: Overview, challenges and mitigation. Electric Power Systems Research. 2021;192:106927. doi:10.1016/j.epsr.2020.106927 | |
| dc.relation.references | Gil A, Berendt-Marchel M, Modzelewska R, Siluszyk A, Siluszyk M, Wawrzaszek A, et al. Review of Geomagnetically Induced Current Proxies in Mid-Latitude European Countries. Energies. 2023;16(21):7406. doi:10.3390/en16217406. | |
| dc.relation.references | Naim W, Hilber P, Shayesteh E. Impact of geomagnetic disturbances on power transformers: risk assessment of extreme events and data availability. Life Cycle Reliability and Safety Engineering. 2022;11(1):11–18. doi:10.1007/s41872-021-00179-8. | |
| dc.relation.references | Jankee P, Oyedokun D, Soltanian M, Chisepo HK, Heyns M. Geomagnetically induced currents: Frequency spectra and threats to voltage stability. IEEE Access. 2022;10:62484–62501. doi:10.1109/ACCESS.2022.3182237 | |
| dc.relation.references | Zhang T, Ebihara Y, Tanaka T. Nighttime geomagnetic response to jumps of solar wind dynamic pressure: A possible cause of Qu´ebec blackout in March 1989. Space Weather. 2023;21(11):e2023SW003493. doi:10.1029/2023SW003493. | |
| dc.relation.references | Allen J, Sauer H, Frank L, Reiff P. Effects of the March 1989 solar activity. Eos, Transactions American Geophysical Union. 1989;70(46):1479–1488. doi:10.1029/89EO00409. | |
| dc.relation.references | Hayakawa H, Ebihara Y, Willis DM, Toriumi S, Iju T, Hattori K, et al. Temporal and spatial evolutions of a large sunspot group and great auroral storms around the Carrington event in 1859. Space Weather. 2019;17(11):1553–1569. doi:10.1029/2019SW002269 | |
| dc.relation.references | Anagnostopoulos G, Karkanis A, Kampatagis A, Marhavilas P, Menesidou SA, Efthymiadis D, et al. Ground Electric Field, Atmospheric Weather and Electric Grid Variations in Northeast Greece Influenced by the March 2012 Solar Activity and the Moderate to Intense Geomagnetic Storms. Remote Sensing. 2024;16(6):998. doi:10.3390/rs16060998 | |
| dc.relation.references | Taran S, Alipour N, Rokni K, Hosseini SH, Shekoofa O, Safari H. Effect of geomagnetic storms on a power network at mid latitudes. Advances in Space Research. 2023;71(12):5453–5465. doi:10.1016/j.asr.2023.02.027. | |
| dc.relation.references | Bolduc L. GIC observations and studies in the Hydro-Qu´ebec power system. Journal of atmospheric and solar-terrestrial physics. 2002;64(16):1793–1802. doi:10.1016/S1364-6826(02)00128-1. | |
| dc.relation.references | Oughton EJ, Skelton A, Horne RB, Thomson AW, Gaunt CT. Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure. Space weather. 2017;15(1):65– 83. doi:10.1002/2016SW001491 | |
| dc.relation.references | Kappenman J. Geomagnetic storms and their impacts on the US power grid. Citeseer; 2010. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi= c01bd0a6ce65ef1e5b2b055e8494de700c614864. | |
| dc.relation.references | Kwak YS, Kim JH, Kim S, Miyashita Y, Yang T, Park SH, et al. Observational Overview of the May 2024 G5-Level Geomagnetic Storm: From Solar Eruptions to Terrestrial Consequences. Journal of Astronomy and Space Sciences. 2024;41(3):171–194. doi:10.5140/JASS.2024.41.3.171 | |
| dc.relation.references | Souza J, Dandenault P, Santos A, Riccobono J, Migliozzi M, Kapali S, et al. Impacts of storm electric fields and traveling atmospheric disturbances over the Americas during 23–24 April 2023 geomagnetic storm: Experimental analysis. Journal of Geophysical Research: Space Physics. 2024;129(7):e2024JA032698. doi:10.1029/2024JA032698 | |
| dc.relation.references | Gonzalez-Esparza JA, Sanchez-Garcia E, Sergeeva M, Corona-Romero P, Gonzalez-Mendez L, Valdes-Galicia J, et al. The mother’s day geomagnetic storm on 10 May 2024: Aurora observations and low latitude space weather effects in Mexico. Space Weather. 2024;22(11):e2024SW004111. doi:10.1029/2024SW004111. | |
| dc.relation.references | Hayakawa H, Ebihara Y, Mishev A, Koldobskiy S, Kusano K, Bechet S, et al. The Solar and Geomagnetic Storms in 2024 May: A Flash Data Report. The Astrophysical Journal. 2025;979(1):49. doi:10.3847/1538- 4357/ad9335. | |
| dc.relation.references | Caraballo R, Gonz´alez-Esparza J, Pacheco C, Corona-Romero P, Arzate-Flores J, Castellanos-Velazco C. The Impact of Geomagnetically Induced Currents (GIC) on the Mexican Power Grid: Numerical Modeling and Observations From the 10 May 2024, Geomagnetic Storm. Geophysical Research Letters. 2025;52(4):e2024GL112749. doi:10.1029/2024GL112749 | |
| dc.relation.references | Caraballo R, Gonz´alez-Esparza J, Pacheco C, Corona-Romero P. Improved model for GIC calculation in the Mexican power grid. Space Weather. 2023;21(10):e2022SW003202. doi:10.1029/2022SW003202. | |
| dc.relation.references | Sierra-Porta D, Petro-Ramos J, Ruiz-Morales D, Herrera-Acevedo D, Garc´ıa-Teheran A, Alvarado MT. Machine learning models for predicting geomagnetic storms across five solar cycles using Dst index and heliospheric variables. Advances in Space Research. 2024;74(8):3483–3495. doi:10.1016/j.asr.2024.08.031. | |
| dc.relation.references | Sun X, Zhima Z, Duan S, Hu Y, Lu C, Ran Z. Statistical Analysis of the Correlation between Geomagnetic Storm Intensity and Solar Wind Parameters from 1996 to 2023. Remote Sensing. 2024;16(16):2952. doi:10.3390/rs16162952. | |
| dc.relation.references | Manu V, Balan N, Zhang QH, Xing ZY. Association of the Main Phase of the Geomagnetic Storms in Solar Cycles 23 and 24 With Corresponding Solar Wind-IMF Parameters. Journal of Geophysical Research: Space Physics. 2022;127(10):e2022JA030747. doi:10.1029/2022JA030747 | |
| dc.relation.references | Kamide Y, Baumjohann W, Daglis I, Gonzalez W, Grande M, Joselyn J, et al. Current understanding of magnetic storms: Storm-substorm relationships. Journal of Geophysical Research: Space Physics. 1998;103(A8):17705–17728. doi:10.1029/98JA01426. | |
| dc.relation.references | Kamide Y, Yokoyama N, Gonzalez W, Tsurutani B, Daglis I, Brekke A, et al. Two-step development of geomagnetic storms. Journal of Geophysical Research: Space Physics. 1998;103(A4):6917–6921. doi:10.1029/97JA03337. | |
| dc.relation.references | Yokoyama N, Kamide Y. Statistical nature of geomagnetic storms. Journal of Geophysical Research: Space Physics. 1997;102(A7):14215–14222. doi:10.1029/97JA00903. | |
| dc.relation.references | Wanliss JA, Showalter KM. High-resolution global storm index: Dst versus SYM-H. Journal of Geophysical Research: Space Physics. 2006;111(A2). doi:10.1029/2005JA011034. | |
| dc.relation.references | Collado-Villaverde A, Mu˜noz P, Cid C. Classifying and bounding geomagnetic storms based on the SYM-H and ASY-H indices. Natural Hazards. 2024;120(2):1141–1162. doi:10.1007/s11069-023-06241-1. | |
| dc.relation.references | Araki T. A Physical Model of the Geomagnetic Sudden Commencement. Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves. 1994;81:183–200. doi:10.1029/GM081p0183. | |
| dc.relation.references | Vichare G, Alex S, Lakhina G. Some characteristics of intense geomagnetic storms and their energy budget. Journal of Geophysical Research: Space Physics. 2005;110(A3). doi:10.1029/2004JA010418. | |
| dc.relation.references | Bocchialini K, Grison B, Menvielle M, Chambodut A, Cornilleau-Wehrlin N, Fontaine D, et al. Statistical analysis of solar events associated with storm sudden commencements over one year of solar maximum during cycle 23: Propagation from the Sun to the Earth and effects. Solar Physics. 2018;293(5):75. doi:10.1007/s11207- 018-1278-5. | |
| dc.relation.references | Ahmed O, Badruddin B, Derouich M. Characteristics and development of the main phase disturbance in geomagnetic storms (Dst≤-50nT). Advances in Space Research. 2024;73(9):4453–4481. doi:10.1016/j.asr.2024.01.050 | |
| dc.relation.references | Kamide Y, Maltsev YP. 14Geomagnetic Storms. Handbook of the solar-terrestrial environment. 2007; p. 355. doi:10.1007/978-3-540-46315-3 14. | |
| dc.relation.references | Xu D, Chen H, Gao M. Observed geomagnetic induction effect on Dst-related magnetic observations under different disturbance intensities of the magnetospheric ring current. Earth, Planets and Space. 2015;67:1–12. doi:10.1186/s40623-015-0189-z | |
| dc.relation.references | Hayakawa H, Ribeiro P, Vaquero JM, Gallego MC, Knipp DJ, Mekhaldi F, et al. The extreme space weather event in 1903 October/November: An outburst from the quiet Sun. The Astrophysical Journal Letters. 2020;897(1):L10. doi:10.3847/2041-8213/ab6a18. | |
| dc.relation.references | Hayakawa H, Blake SP, Bhaskar A, Hattori K, Oliveira DM, Ebihara Y. The extreme space weather event in 1941 February/March. The Astrophysical Journal. 2021;908(2):209. doi:10.3847/1538-4357/abb772. | |
| dc.relation.references | Loewe C, Pr¨olss G. Classification and mean behavior of magnetic storms. Journal of Geophysical Research: Space Physics. 1997;102(A7):14209–14213. doi:10.1029/96JA04020. | |
| dc.relation.references | Gonzalez WD, Tsurutani BT. Criteria of interplanetary parameters causing intense magnetic storms (Dst¡- 100 nT). Planetary and Space Science. 1987;35(9):1101–1109. doi:10.1016/0032-0633(87)90015-8. | |
| dc.relation.references | Cole K. Magnetic storms and associated phenomena. Space Science Reviews. 1966;5:699–770. doi:10.1007/BF00173103. | |
| dc.relation.references | Piersanti M, De Michelis P, Del Moro D, Tozzi R, Pezzopane M, Consolini G, et al. From the Sun to Earth: effects of the 25 August 2018 geomagnetic storm. Annales Geophysicae. 2020;38(3):703–724. doi:10.5194/angeo38-703-2020 | |
| dc.relation.references | Akala A, Oyedokun O, Amaechi P, Simi K, Ogwala A, Arowolo O. Solar origins of August 26, 2018 geomagnetic storm: Responses of the interplanetary medium and equatorial/low-latitude ionosphere to the storm. Space Weather. 2021;19(10):e2021SW002734. doi:10.1029/2021SW002734. | |
| dc.relation.references | Abe O, Fakomiti M, Igboama W, Akinola O, Ogunmodimu O, Migoya-Oru´e Y. Statistical analysis of the occurrence rate of geomagnetic storms during solar cycles 20–24. Advances in Space Research. 2023;71(5):2240– 2251. doi:10.1016/j.asr.2022.10.033. | |
| dc.relation.references | Watari S, Nakamizo A, Ebihara Y. Solar events and solar wind conditions associated with intense geomagnetic storms. Earth, Planets and Space. 2023;75(1):90. doi:10.1186/s40623-023-01843-2. | |
| dc.relation.references | Starodubtsev S, Kovalev I, Gololobov P, Grigoryev V, Kravtsova M, Krymsky G, et al. Investigating the heliosphere, magnetosphere, atmosphere, and properties of cosmic rays during the 2018 Aug 25–26 strong geomagnetic storm. Advances in Space Research. 2024;73(8):4363–4377. doi:10.1016/j.asr.2024.01.027 | |
| dc.relation.references | Shadrina L, Kozlov V, Grigoriev YM. On the relationship of power lines outages caused by thunderstorms with Forbush decreases of cosmic rays. In: IOP Conference Series: Earth and Environmental Science. vol. 946. IOP Publishing; 2021. p. 012017. | |
| dc.relation.references | Rivers M, Gajewski LG, Denkenberger D. Global transformer overheating from geomagnetic storms. arXiv preprint arXiv:240318070. 2024;doi:10.48550/arXiv.2403.18070. | |
| dc.relation.references | Richardson IG, Cane HV. Near-Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties. Solar Physics. 2010;264:189–237. doi:10.1007/s11207-010-9568-6. | |
| dc.relation.references | Kan J, Lee L. Energy coupling function and solar wind-magnetosphere dynamo. Geophysical Research Letters. 1979;6(7):577–580. doi:10.1029/GL006i007p00577. | |
| dc.relation.references | Khan A, Sarfaraz A. RNN-LSTM-GRU based language transformation. Soft Computing. 2019;23(24):13007– 13024. doi:10.1007/s00500-019-04281-z. | |
| dc.relation.references | Lim B, Arık SO, Loeff N, Pfister T. Temporal fusion transformers for interpretable multi-horizon time series ¨ forecasting. International Journal of Forecasting. 2021;37(4):1748–1764. doi:10.1016/j.ijforecast.2021.03.012 | |
| dc.relation.references | Zhang H, Zou Y, Yang X, Yang H. A temporal fusion transformer for short-term freeway traffic speed multistep prediction. Neurocomputing. 2022;500:329–340. doi:10.1016/j.neucom.2022.05.083. | |
| dc.relation.references | Breiman L. Random forests. Machine learning. 2001;45:5–32. doi:10.1023/A:1010933404324. | |
| dc.relation.references | Friedman JH. Stochastic gradient boosting. Computational statistics & data analysis. 2002;38(4):367–378. doi:10.1016/S0167-9473(01)00065-2. | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.source | PLoS One 20 | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | |
| dc.subject.lemb | Tormentas geomagnéticas | |
| dc.subject.lemb | Clima espacial | |
| dc.subject.lemb | Correlación estadística | |
| dc.subject.lemb | Geofísica | |
| dc.subject.lemb | Ingeniería eléctrica | |
| dc.subject.lemb | Geomagnetic storms | |
| dc.subject.lemb | Space weather | |
| dc.subject.lemb | Statistical correlation | |
| dc.subject.lemb | Geophysics | |
| dc.subject.lemb | Electrical engineering | |
| dc.subject.ocde | 1. Ciencias Naturales::1C. Ciencias físicas::1C08. Astronomía | |
| dc.subject.ocde | 2. Ingeniería y Tecnología::2B. Ingenierías Eléctrica, Electrónica e Informática::2B03. Automatización y sistemas de control | |
| dc.subject.ods | ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos | |
| dc.subject.proposal | Geomagnetic storms | |
| dc.subject.proposal | Space weather | |
| dc.subject.proposal | Power systems | |
| dc.subject.proposal | Dst index | |
| dc.subject.proposal | Infrastructure vulnerability | |
| dc.subject.proposal | Grid reliability | |
| dc.title | Geomagnetic disturbances and grid vulnerability: Correlating storm intensity with power system failures | |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_18cf | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 996a607a-3eb1-4484-8978-ed736b9fc0b7 | |
| relation.isAuthorOfPublication.latestForDiscovery | 996a607a-3eb1-4484-8978-ed736b9fc0b7 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Geomagnetic_storm_and_energy_outages-5.pdf
- Tamaño:
- 546.98 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 14.49 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: