Publicación: Biomechanical and kinematic kait knalysis in lower limb amputees: cross-Sectional study
| dc.contributor.author | Olaya Mira, Natali | |
| dc.contributor.author | Gómez Hernández, Luz Marina | |
| dc.contributor.author | Viloria Barragan, Carolina | |
| dc.contributor.author | Monsalve Montes, Manuela | |
| dc.contributor.author | Soto Cardona, Isabel Cristina | |
| dc.contributor.researchgroup | Grupo de Investigación Física Aplicada y Procesamiento de Imágenes y Señales- FAPIS | |
| dc.date.accessioned | 2025-12-04T19:10:58Z | |
| dc.date.issued | 2025-07-29 | |
| dc.description | Contiene ilustraciones, gráficos, fotografías | |
| dc.description.abstract | Background: The quantification of gait parameters in amputees facilitates the assessment of their performance with prosthetic devices. These parameters often depend on measurements based on anatomical aspects that vary across different types of lower limb amputations. Objective: This study aimed to investigate body weight distribution, and gait symmetry, quality, and propulsion, as well as pelvic kinematics in the amputee population. Methods: The EcoWalk baropodometry platform was used to measure plantar pressure, and the G-Walk inertial sensor was used for accelerometry measurements in 29 unilateral lower limb amputees. Results: Values were estimated for each variable under analysis, and the findings were categorized by the level of amputation. All variables exhibited normal distribution within each group under analysis , except for the symmetry index in above-knee (AK) amputees (P=.03). Regarding the body weight distribution (P=.11), velocity (P≥.99), propulsion (P=.38), and quality index (P=.10) of the amputated limb; no significant differences were observed between the AK and below-knee (BK) amputees. The most significant deviation was noted in pelvic obliquity, which was greater in AK amputees compared to BK amputees. Conclusions: The values reported for the variables under analysis may enable the establishment of more precise reference levels for the amputee population, thereby contributing to a more accurate diagnostic process and aiding prosthetic fitting. | |
| dc.format.extent | 10 | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Olaya Mira N, Gómez Hernández LM, Viloria Barragán C, Monsalve Montes M, Soto Cardona IC Biomechanical and Kinematic Gait Analysis in Lower Limb Amputees: Cross-Sectional Study JMIR Rehabil Assist Technol 2025;12:e67022 doi: 10.2196/67022 | |
| dc.identifier.doi | 10.2196/67022 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/14288 | |
| dc.identifier.url | https://rehab.jmir.org/2025/1/e67022/ | |
| dc.language.iso | eng | |
| dc.publisher | JMIR Rehabilitation And Assistive Technologies | |
| dc.relation.references | Fontes CH da S Filho, Laett CT, Gavilão UF, et al. Bodyweight distribution between limbs, muscle strength, and proprioception in traumatic transtibial amputees: a cross-sectional study. Clinics (Sao Paulo). 2021;76:e2486. [doi: 10. 6061/clinics/2021/e2486] | |
| dc.relation.references | Klöpfer-Krämer I, Brand A, Wackerle H, Müßig J, Kröger I, Augat P. Gait analysis - Available platforms for outcome assessment. Injury. May 2020;51 Suppl 2:S90-S96. [doi: 10.1016/j.injury.2019.11.011] [Medline: 31767371] | |
| dc.relation.references | Varrecchia T, Serrao M, Rinaldi M, et al. Common and specific gait patterns in people with varying anatomical levels of lower limb amputation and different prosthetic components. Hum Mov Sci. Aug 2019;66:9-21. [doi: 10.1016/j.humov. 2019.03.008] [Medline: 30889496] | |
| dc.relation.references | Cutti AG, Verni G, Migliore GL, Amoresano A, Raggi M. Reference values for gait temporal and loading symmetry of lower-limb amputees can help in refocusing rehabilitation targets. J Neuroeng Rehabil. Sep 5, 2018;15(Suppl 1):61. [doi: 10.1186/s12984-018-0403-x] [Medline: 30255808] | |
| dc.relation.references | Rathor R, Kumar Singh A, Choudhary H, Goswami C, Fekete G. A systematic review on gait analysis methods and assistive devices in lower limb prosthetics. Mater Today. 2021;44:4251-4255. [doi: 10.1016/j.matpr.2020.10.541] | |
| dc.relation.references | Frlan-Vrgoc L, Vrbanić TSL, Kraguljac D, Kovacević M. Functional outcome assessment of lower limb amputees and prosthetic users with a 2-minute walk test. Coll Antropol. Dec 2011;35(4):1215-1218. [Medline: 22397262] | |
| dc.relation.references | Spaan MH, Vrieling AH, van de Berg P, Dijkstra PU, van Keeken HG. Predicting mobility outcome in lower limb amputees with motor ability tests used in early rehabilitation. Prosthet Orthot Int. Apr 2017;41(2):171-177. [doi: 10. 1177/0309364616670397] [Medline: 27770064] | |
| dc.relation.references | Bernardini M, Quarto G, Del Sole D, Bernardini E. Influences of postural alterations on the hemodynamic of the gait in patients with saphenous incompetence. A preliminary study. Ann Ital Chir. 2019;90:545-550. [Medline: 31929174] | |
| dc.relation.references | Winiarski S, Rutkowska-Kucharska A, Kowal M. Symmetry function as a new tool for evaluating the symmetry of gait in transfemoral amputees. Gait Posture. Oct 2021;90:9-15. [doi: 10.1016/j.gaitpost.2021.07.021] | |
| dc.relation.references | WALK evaluación de la coordinación muscular durante la marcha. BTS Bioengineering. 2020. URL: www. btsbioengineering.com [Accessed 2025-07-14] | |
| dc.relation.references | Gaunaurd I, Kristal A, Horn A, et al. The utility of the 2-minute walk test as a measure of mobility in people with lower limb amputation. Arch Phys Med Rehabil. Jul 2020;101(7):1183-1189. [doi: 10.1016/j.apmr.2020.03.007] [Medline: 32272105] | |
| dc.relation.references | Duclos N, Duclos C, Mesure S. Control postural: fisiología, conceptos principales e implicaciones para la readaptación [Article in Spanish]. EMC - Kinesiterapia - Medicina Física. Apr 2017;38(2):1-9. [doi: 10.1016/S1293-2965(17)83662- 8] | |
| dc.relation.references | Simon AM, Fey NP, Ingraham KA, Finucane SB, Halsne EG, Hargrove LJ. Improved weight-bearing symmetry for transfemoral amputees during standing up and sitting down with a powered knee-ankle prosthesis. Arch Phys Med Rehabil. Jul 2016;97(7):1100-1106. [doi: 10.1016/j.apmr.2015.11.006] [Medline: 26686876] | |
| dc.relation.references | Brandt A, Huang HH. Effects of extended stance time on a powered knee prosthesis and gait symmetry on the lateral control of balance during walking in individuals with unilateral amputation. J Neuroeng Rehabil. Nov 29, 2019;16(1):151. [doi: 10.1186/s12984-019-0625-6] [Medline: 31783759] | |
| dc.relation.references | Chow DHK, Holmes AD, Lee CKL, Sin SW. The effect of prosthesis alignment on the symmetry of gait in subjects with unilateral transtibial amputation. Prosthet Orthot Int. Aug 2006;30(2):114-128. [doi: 10.1080/03093640600568617] [Medline: 16990222] | |
| dc.relation.references | Zequera M, Perdomo O, Wilches C, Vizcaya P. Pilot study: assessing repeatability of the EcoWalk platform resistive pressure sensors to measure plantar pressure during barefoot standing. J Phys: Conf Ser. Jun 26, 2013;450:012029. [doi: 10.1088/1742-6596/450/1/012029] | |
| dc.relation.references | Caballero C, Barbado D, Moreno FJ. El procesado del desplazamiento del centro de presiones para el estudio de la relación complejidad/rendimiento observada en el control postural en bipedestación [Article in Spanish]. Revista Andaluza de Medicina del Deporte. Sep 2013;6(3):101-107. [doi: 10.1016/S1888-7546(13)70043-1] | |
| dc.relation.references | Izzo R, Bertoni M, Cejudo A, Giovannelli M, Varde’I CH. The global symmetry index, symmetry index, quality index and kinematics of the gait cycle with the synchronized contribution of the latest generation magnetic-inertial and electromyographic technology. Practical surveys and planning hypotheses for the revision of gesture. JPES. May 2022;22(5):1258-1270. [doi: 10.7752/jpes.2022.05158] | |
| dc.relation.references | Błażkiewicz M, Wiszomirska I, Wit A. Comparison of four methods of calculating the symmetry of spatial-temporal parameters of gait. Acta Bioeng Biomech. 2014;16(1):29-35. [doi: 10.5277/ABB140104] [Medline: 24708092] | |
| dc.relation.references | Lewis CL, Laudicina NM, Khuu A, Loverro KL. The human pelvis: variation in structure and function during gait. Anat Rec (Hoboken). Apr 2017;300(4):633-642. [doi: 10.1002/ar.23552] [Medline: 28297184] | |
| dc.relation.references | Moharrami A, Mirghaderi P, Hoseini Zare N, Moazen-Jamshidi MM, Ebrahimian M, Mortazavi SMJ. Slight pelvic obliquity is normal in a healthy population: a cross-sectional study. J Exp Orthop. May 31, 2023;10(1):57. [doi: 10.1186/ s40634-023-00613-z] [Medline: 37254005] | |
| dc.relation.references | Ettema S, Kal E, Houdijk H. General estimates of the energy cost of walking in people with different levels and causes of lower-limb amputation: a systematic review and meta-analysis. Prosthet Orthot Int. Oct 1, 2021;45(5):417-427. [doi: 10.1097/PXR.0000000000000035] [Medline: 34538817] | |
| dc.relation.references | María José Espinoza V, Daniela García S. Niveles de amputación en extremidades inferiores: repercusión en el futuro del paciente. Revista Médica Clínica Las Condes. Mar 2014;25(2):276-280. [doi: 10.1016/S0716-8640(14)70038-0] | |
| dc.relation.references | Esquenazi A. Gait analysis in lower-limb amputation and prosthetic rehabilitation. Phys Med Rehabil Clin N Am. Feb 2014;25(1):153-167. [doi: 10.1016/j.pmr.2013.09.006] [Medline: 24287245] | |
| dc.relation.references | Chui KK, Jorge M, Yen SC, Lusardi M. Orthotics and Prosthetics in Rehabilitation. 4th ed. Elsevier; 2020. ISBN: 9780323610186 | |
| dc.relation.references | Sagawa Y, Turcot K, Armand S, Thevenon A, Vuillerme N, Watelain E. Biomechanics and physiological parameters during gait in lower-limb amputees: a systematic review. Gait Posture. Apr 2011;33(4):511-526. [doi: 10.1016/j.gaitpost. 2011.02.003] [Medline: 21392998] | |
| dc.relation.references | Clemens S, Kim KJ, Gailey R, Kirk-Sanchez N, Kristal A, Gaunaurd I. Inertial sensor-based measures of gait symmetry and repeatability in people with unilateral lower limb amputation. Clin Biomech (Bristol). Feb 2020;72:102-107. [doi: 10.1016/j.clinbiomech.2019.12.007] [Medline: 31862603] | |
| dc.relation.references | Ochoa-Diaz C, Padilha L Bó A. Symmetry analysis of amputee gait based on body center of mass trajectory and discrete fourier transform. Sensors (Basel). Apr 23, 2020;20(8):2392. [doi: 10.3390/s20082392] [Medline: 32340117] | |
| dc.relation.references | Eshraghi A, Abu Osman NA, Karimi M, Gholizadeh H, Soodmand E, Wan Abas WAB. Gait biomechanics of individuals with transtibial amputation: effect of suspension system. PLoS One. 2014;9(5):e96988. [doi: 10.1371/journal. pone.0096988] [Medline: 24865351] | |
| dc.relation.references | Kishner S, Laborde JM. Lower-Extremity Amputations. Medscape. 2023. URL: https://emedicine.medscape.com/article/ 1237638-overview [Accessed 2023-08-08] | |
| dc.rights | Natali Olaya Mira, Luz Marina Gómez Hernández, Carolina Viloria Barragán, Manuela Monsalve Montes, Isabel Cristina Soto Cardona. Originally published in JMIR Rehabilitation and Assistive Technology (https://rehab.jmir.org), 29.7.2025. | |
| dc.rights.license | Atribución 4.0 Internacional (CC BY 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.ddc | 610 - Medicina y salud::617 - Cirugía, medicina regional, odontología, oftalmología, otología, audiología | |
| dc.subject.lem | Amputados — Rehabilitación Prótesis de miembros inferiores Baropodometría Biomecánica Prótesis — Adaptación y ajuste Amputees — Rehabilitation Lower extremity — Prosthetics Baropodometry Biomechanics Prosthesis fitting | |
| dc.subject.lemb | Amputados -- Rehabilitación | |
| dc.subject.lemb | Prótesis de miembros inferiores | |
| dc.subject.lemb | Baropodometría | |
| dc.subject.lemb | Biomecánica | |
| dc.subject.lemb | Amputees -- Rehabilitation | |
| dc.subject.lemb | Lower extremity -- Prosthetics | |
| dc.subject.lemb | Baropodometry | |
| dc.subject.lemb | Biomechanics | |
| dc.subject.lemb | Prótesis -- Adaptación y ajuste | |
| dc.subject.lemb | Prosthesis fitting | |
| dc.subject.ocde | 2. Ingeniería y Tecnología | |
| dc.subject.ods | ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades | |
| dc.subject.proposal | Amputee | |
| dc.subject.proposal | Gait analysis | |
| dc.subject.proposal | Body weight distribution | |
| dc.subject.proposal | Gait symmetry | |
| dc.subject.proposal | Prosthetics | |
| dc.title | Biomechanical and kinematic kait knalysis in lower limb amputees: cross-Sectional study | |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_18cf | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 875881db-f851-4d7b-9b43-ed08344afa64 | |
| relation.isAuthorOfPublication | d6d2ca69-d787-4d58-a0ba-1c335dc623f1 | |
| relation.isAuthorOfPublication | 1de6ec45-6636-4104-a49c-b290ac4265eb | |
| relation.isAuthorOfPublication | 9b7f6110-56d0-4b8f-8100-3da95f4b6030 | |
| relation.isAuthorOfPublication | 0d32844b-faff-47de-a0b0-5ffad83ead58 | |
| relation.isAuthorOfPublication.latestForDiscovery | 875881db-f851-4d7b-9b43-ed08344afa64 |