Publicación: Complexity and scaling descriptors as diagnostic predictors of heliophysical indices across solar-cycle timescales
| dc.contributor.author | Sierra Porta, David | |
| dc.contributor.author | Canedo Verdugo, Maximiliano | |
| dc.contributor.author | Herrera Acevedo, Daniel David | |
| dc.date.accessioned | 2026-02-17T13:15:38Z | |
| dc.date.issued | 2026-02-10 | |
| dc.description | Contiene gráficos | |
| dc.description.abstract | Heliophysical variability emerges from a coupled, multiscale system in which changes in the solar atmosphere and heliospheric plasma translate into measurable signatures in widely used activity indices. Operational space-weather workflows often summarize this variability through amplitudes and a small set of bulk solar-wind covariates, yet important dynamical information may also reside in the evolving morphology of the signals. We examine whether shape descriptors computed from heliophysical time series provide information beyond classical amplitude summaries and standard bulk solar-wind covariates. Using daily OMNIWeb-era records spanning 1964–2025, we compute ten sliding-window descriptors under a past-only convention, designed to capture complementary aspects of temporal morphology such as irregularity, roughness, and long-range dependence. The descriptor set combines entropy measures, fractal-dimension estimators, the Hurst exponent, and Lempel–Ziv (LZ) complexity, yielding a compact representation of time-series structure that is not reducible to amplitude alone. The window length is treated as a methodological hyperparameter and selected through a target-specific sensitivity analysis that jointly favors competitive out-of-sample RMSE and stable permutation-importance rankings across neighboring windows. Two complementary learners, gradient boosting and a multilayer perceptron, are used as diagnostic probes to quantify permutation-based feature relevance under chronological splitting and training-only preprocessing. Across three targets (F10.7, Sunspot Number, and Dst), shape descriptors consistently rank among the most informative predictors, often matching or exceeding the relevance of standard solar-wind inputs. The most robust signals arise from LZ complexity and a compact subset of entropy/fractal measures, whose windowed trajectories track solar-cycle phases with characteristic lead–lag behaviour. Correlation analyses on both levels and standardised first differences expose redundancy within descriptor families and reduce spurious associations driven by shared nonstationarity, motivating a family-level interpretation of relevance rather than causal attribution. Overall, the results indicate that heliophysical time-series morphology encodes dynamical information complementary to amplitude- and bulk-plasma descriptions, suggesting compact, instrument-light features for augmenting future space-weather modelling pipelines. | |
| dc.format.extent | 14 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Sierra-Porta, D., Canedo Verdugo, M., & Herrera Acevedo, D. D. (2026). Complexity and scaling descriptors as diagnostic predictors of heliophysical indices across solar-cycle timescales. Advances in Space Research. https://doi.org/10.1016/j.asr.2026.02.010 | |
| dc.identifier.doi | https://doi.org/10.1016/j.asr.2026.02.010 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/14326 | |
| dc.publisher | Advances in Space Research | |
| dc.relation.references | Aguirre, L. A., & Letellier, C. (2011). Investigating observability properties from data in nonlinear dynamics. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 83(6), 066209. doi:https://doi.org/10.1103/PhysRevE.83.066209. | |
| dc.relation.references | Ali, Z.A., Abduljabbar, Z.H., Tahir, H.A., et al., 2023. extreme gradient boosting algorithm with machine learning: a review. Acad. J. Nawroz Univ. 12 (2), 320–334. https://doi.org/10.25007/ajnu.v12n2a1612. | |
| dc.relation.references | Altmann, A., Tolos,i, L., Sander, O., et al., 2010. Permutation importance: a corrected feature importance measure. Bioinformatics 26 (10), 1340– 1347. https://doi.org/10.1093/bioinformatics/btq134. | |
| dc.relation.references | Bailey, R.L., Reiss, M., Arge, C.N., et al., 2021. Using gradient boosting regression to improve ambient solar wind model predictions. Space Weather 19 (5). https://doi.org/10.1029/2020SW002673, e2020SW002673. | |
| dc.relation.references | Balasis, G., Daglis, I.A., Papadimitriou, C., et al., 2009. Investigating dynamical complexity in the magnetosphere using various entropy measures. J. Geophys. Res.: Space Phys. 114 (A9). https://doi.org/ 10.1029/2008JA014035. | |
| dc.relation.references | Bandt, C., Pompe, B., 2002. Permutation entropy: a natural complexity measure for time series. Phys. Rev. Lett. 88 (17), 174102. https://doi. org/10.1103/PhysRevLett.88.174102. | |
| dc.relation.references | Braverman, V., 2015. Sliding window algorithms. In Encyclopedia of algorithms. Springer, pp. 1–6. https://doi.org/10.1007/978-3-642- 27848-8_797-1. | |
| dc.relation.references | Brudno, A.A., 1978. The complexity of the trajectories of a dynamical system. Russ. Math. Surv. 33 (1), 197. https://doi.org/10.1070/ RM1978v033n01ABEH002243. | |
| dc.relation.references | Carbone, A., Castelli, G., Stanley, H.E., 2004. Time-dependent hurst exponent in financial time series. Physica A 344 (1–2), 267–271. https:// doi.org/10.1016/j.physa.2004.06.130. | |
| dc.relation.references | Carlsson, G., Vejdemo-Johansson, M., 2021. Topological data analysis with applications. Cambridge University Press. URL: https://lccn. loc.gov/2021024970. doi: 10.1017/9781108975704. | |
| dc.relation.references | Chazal, F., Michel, B., 2021. An introduction to topological data analysis: fundamental and practical aspects for data scientists. Front. Artif. Intell. 4, 667963. https://doi.org/10.3389/frai.2021.667963. | |
| dc.relation.references | Chen, R.X.F. (2021). A brief introduction to shannon’s information theory. URL: https://arxiv.org/abs/1612.09316. doi:https://doi.org/ 10.48550/arXiv.1612.09316. arXiv:1612.09316. | |
| dc.relation.references | Chen, T., He, T., Benesty, M., et al., 2015. Xgboost: extreme gradient boosting. R package version 0.4-2 1 (4), 1–4. | |
| dc.relation.references | De Freitas, D., De Medeiros, J., 2009. Nonextensivity in the solar magnetic activity during the increasing phase of solar cycle 23. Europhys. Lett. 88 (1), 19001. https://doi.org/10.1209/0295-5075/88/ 19001. | |
| dc.relation.references | Deshmukh, V., Baskar, S., Berger, T., et al., 2023. Comparing feature sets and machine-learning models for prediction of solar flares-topology, physics, and model complexity. Astron. Astrophys. 674, A159. https:// doi.org/10.1051/0004-6361/202245742. | |
| dc.relation.references | Donner, R.V., Stolbova, V., Balasis, G., et al., 2018. Temporal organization of magnetospheric fluctuations unveiled by recurrence patterns in the dst index. Chaos: An Interdiscip. J. Nonlinear Sci. 28 (8). https://doi.org/10.1063/1.5024792. | |
| dc.relation.references | Fasy, B.T., Kim, J., Lecci, F. et al., 2014. Introduction to the r package tda. arXiv preprint arXiv:1411.1830, doi:https://doi.org/10.48550/ arXiv.1411.1830. | |
| dc.relation.references | Gneiting, T., Schlather, M., 2004. Stochastic models that separate fractal dimension and the hurst effect. SIAM Rev. 46 (2), 269–282. https://doi. org/10.1137/S0036144501394387. | |
| dc.relation.references | Goncharenko, L.P., Tamburri, C.A., Tobiska, W.K., et al., 2021. A new model for ionospheric total electron content: the impact of solar flux proxies and indices. J. Geophys. Res.: Space Phys. 126 (2). https://doi. org/10.1029/2020JA028466, e2020JA028466. | |
| dc.relation.references | Gopinath, S., Prince, P., 2017. Multifractal characteristics of magnetospheric dynamics and their relationship with sunspot cycle. Adv. Space Res. 59 (9), 2265–2278. https://doi.org/10.1016/j.asr.2017.02.011 | |
| dc.relation.references | Higuchi, T., 1988. Approach to an irregular time series on the basis of the fractal theory. Physica D 31 (2), 277–283. https://doi.org/10.1016/ 0167-2789(88)90081-4. | |
| dc.relation.references | Kaspar, F., Schuster, H., 1987. Easily calculable measure for the complexity of spatiotemporal patterns. Phys. Rev. A 36 (2), 842. https://doi.org/10.1103/PhysRevA.36.842. | |
| dc.relation.references | Kilpua, E., Good, S., Ala-Lahti, M., et al., 2022. Structure and fluctuations of a slow icme sheath observed at 0.5 au by the parker solar probe. Astron. Astrophys. 663, A108. https://doi.org/10.1051/ 0004-6361/202142191. | |
| dc.relation.references | Kilpua, E.K., Good, S., Ala-Lahti, M., et al., 2024. Permutation entropy and complexity analysis of large-scale solar wind structures and streams. Ann. Geophys., volume 42. Copernicus Publications Go¨ttingen, Germany, pp. 163–177. https://doi.org/10.5194/angeo-42-163- 2024. | |
| dc.relation.references | Kruse, R., Mostaghim, S., Borgelt, C., et al., 2022. Multi-layer perceptrons. In Computational intelligence: a methodological introduction. Springer, pp. 53–124. https://doi.org/10.1007/978-3-030-42227-1_5. | |
| dc.relation.references | Lasˇtovicˇka, J., 2021. The best solar activity proxy for long-term ionospheric investigations. Adv. Space Res. 68 (6), 2354–2360. https://doi.org/10.1016/j.asr.2021.06.032. | |
| dc.relation.references | Lasˇtovicˇka, J., Buresˇova´, D., 2023. Relationships between fof2 and various solar activity proxies. Space Weather 21 (4). https://doi.org/ 10.1029/2022SW003359, e2022SW003359 | |
| dc.relation.references | Livadiotis, G., 2020. Nonextensive statistical mechanics: equivalence between dual entropy and dual probabilities. Entropy 22 (6), 594. https://doi.org/10.3390/e22060594 | |
| dc.relation.references | Maria, C., Boissonnat, J.-D., Glisse, M. et al., 2014. The gudhi library: Simplicial complexes and persistent homology. In Mathematical Software–ICMS 2014: 4th International Congress, Seoul, South Korea, August 5–9, 2014. Proceedings 4 (pp. 167–174). Springer. doi: 10.1007/978-3-662-44199-2_28. | |
| dc.relation.references | Mielniczuk, J., Wojdyłło, P., 2007. Estimation of hurst exponent revisited. Comput. Stat. Data Anal. 51 (9), 4510–4525. https://doi.org/10.1016/j. csda.2006.07.033. | |
| dc.relation.references | Mumford, D. (2002). Pattern theory: the mathematics of perception. URL: https://arxiv.org/abs/math/0212400. arXiv:math/0212400. | |
| dc.relation.references | Pavlos, E.G., Malandraki, O.E., Khabarova, O.V., et al., 2019. Nonextensive statistical analysis of energetic particle flux enhancements caused by the interplanetary coronal mass ejection-heliospheric current sheet interaction. Entropy 21 (7), 648. https://doi.org/10.3390/ e21070648. | |
| dc.relation.references | Pearl, J., 2008. Causal inference. In Proceedings of the 2008th International Conference on Causality: Objectives and Assessment - Volume 6 COA’08 (p. 39–58). JMLR.org. | |
| dc.relation.references | Pearl, J., 2009. Causality. Cambridge University Press. | |
| dc.relation.references | Perea, J.A., Harer, J., 2015. Sliding windows and persistence: an application of topological methods to signal analysis. Found. Comput. Math. 15, 799–838. https://doi.org/10.1007/s10208-014-9206-z. | |
| dc.relation.references | Pérez, J.B., Hauke, S., Lupo, U. et al., 2021. giotto-ph: a python library for high-performance computation of persistent homology of vietorisrips filtrations. arXiv preprint arXiv:2107.05412, doi:https://doi.org/ 10.48550/arXiv.2107.05412. | |
| dc.relation.references | Petrosian, A., 1995. Kolmogorov complexity of finite sequences and recognition of different preictal eeg patterns. In: Proceedings eighth IEEE symposium on computer-based medical systems. IEEE, pp. 212– 217. https://doi.org/10.1109/CBMS.1995.465426 | |
| dc.relation.references | Popescu, M.-C., Balas, V.E., Perescu-Popescu, L., et al., 2009. Multilayer perceptron and neural networks. WSEAS Trans. Circ. Syst. 8 (7), 579– 588. | |
| dc.relation.references | Richman, J.S., Lake, D.E., Moorman, J.R., 2004. Sample entropy. In Methods in enzymology (pp. 172–184). Elsevier volume 384. doi: 10.1016/S0076-6879(04)84011-4. | |
| dc.relation.references | Richman, J.S., Moorman, J.R., 2000. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol.-Heart Circulat. Physiol. 278 (6), H2039–H2049. https://doi.org/10.1152/ ajpheart.2000.278.6.H2039. | |
| dc.relation.references | Sarlis, N., Livadiotis, G., McComas, D., et al., 2024. Persistent behavior in solar energetic particle time series. Astrophys. J. 969 (1), 64. https:// doi.org/10.3847/1538-4357/ad479d. | |
| dc.relation.references | Sauer, T., Yorke, J.A., Casdagli, M., 1991. Embedology. J. Stat. Phys. 65 (3), 579–616. https://doi.org/10.1007/BF01053745. | |
| dc.relation.references | Shannon, C.E., 1948. A mathematical theory of communication. The Bell Syst. Tech. J. 27 (3), 379–423. https://doi.org/10.1002/j.1538- 7305.1948.tb01338.x | |
| dc.relation.references | Sierra-Porta, D., 2022. On the fractal properties of cosmic rays and sun dynamics cross-correlations. Astrophys. Space Sci. 367 (12), 116. https://doi.org/10.1007/s10509-022-04151-5 | |
| dc.relation.references | Sierra-Porta, D., 2024. Relationship between magnetic rigidity cutoff and chaotic behavior in cosmic ray time series using visibility graph and network analysis techniques. Chaos: An Interdisciplinary. J. Nonlinear Sci. 34 (2). https://doi.org/10.1063/5.0167156 | |
| dc.relation.references | Sierra-Porta, D., Canedo Verdugo, M., Herrera Acevedo, D.D., 2025. Global complexity signatures of solar cycles: A unified EntropyFractal survey of OMNI solar wind data (1964–2025). Submitted to Advances in Space Research. | |
| dc.relation.references | Sierra-Porta, D., Domı´nguez-Monterroza, A.-R., 2022. Linking cosmic ray intensities to cutoff rigidity through multifractal detrented fluctuation analysis. Physica A 607, 128159. https://doi.org/10.1016/ j.physa.2022.128159 | |
| dc.relation.references | Stumpo, M., Consolini, G., Alberti, T., et al., 2020. Measuring information coupling between the solar wind and the magnetosphere–ionosphere system. Entropy 22 (3), 276. https://doi.org/10.3390/e22030276 | |
| dc.relation.references | Wawrzaszek, A., Modzelewska, R., Krasin´ska, A., et al., 2022. Fractal dimension analysis of earth magnetic field during 26 august 2018 geomagnetic storm. Entropy 24 (5), 699. https://doi.org/10.3390/ e24050699. | |
| dc.relation.references | Winter, L.M., Ledbetter, K., 2015. Type ii and type iii radio bursts and their correlation with solar energetic proton events. Astrophys. J. 809 (1), 105. https://doi.org/10.1088/0004-637X/809/1/105. | |
| dc.relation.references | Yule, G.U., 1926. Why do we sometimes get nonsense-correlations between time-series?–a study in sampling and the nature of timeseries. J. Roy. Stat. Soc. 89 (1), 1–63. https://doi.org/10.2307/ 2341482. | |
| dc.relation.references | Zozor, S., Ravier, P., Buttelli, O., 2005. On lempel–ziv complexity for multidimensional data analysis. Phys. A-Stat. Mech. Appl., 345, 285– 302. URL: https://api.semanticscholar.org/CorpusID:26659917. doi: 10.1016/J.PHYSA.2004.07.025. | |
| dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.subject.ddc | 520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos | |
| dc.subject.lemb | Clima espacial | |
| dc.subject.lemb | Series de tiempo heliogeofísicas | |
| dc.subject.lemb | Aprendizaje automático | |
| dc.subject.lemb | Física espacial | |
| dc.subject.lemb | Análisis matemático y computacional | |
| dc.subject.lemb | Space weather | |
| dc.subject.lemb | Heliogeophysical time series | |
| dc.subject.lemb | Machine learning | |
| dc.subject.lemb | Space physics | |
| dc.subject.lemb | Mathematical and computational analysis | |
| dc.subject.ocde | 1. Ciencias Naturales::1C. Ciencias físicas::1C08. Astronomía | |
| dc.subject.ods | ODS 4: Educación de calidad. Garantizar una educación inclusiva y equitativa de calidad y promover oportunidades de aprendizaje permanente para todos | |
| dc.subject.proposal | Heliospheric medium | |
| dc.subject.proposal | Solar cycles | |
| dc.subject.proposal | Complexity analysis | |
| dc.subject.proposal | Entropy | |
| dc.subject.proposal | Fractal dimensions | |
| dc.subject.proposal | Algorithmic complexity | |
| dc.title | Complexity and scaling descriptors as diagnostic predictors of heliophysical indices across solar-cycle timescales | |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_18cf | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | DataPaper | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 996a607a-3eb1-4484-8978-ed736b9fc0b7 | |
| relation.isAuthorOfPublication.latestForDiscovery | 996a607a-3eb1-4484-8978-ed736b9fc0b7 |