Publicación: A Low Power Non-Invasive Wrist-Based Approach for Glucose Monitoring
dc.contributor.author | Tobar-Subia-Contento, Luz M. | |
dc.contributor.author | Vargas Ramírez, Raúl Andrés | |
dc.contributor.author | Romero Pérez, Lenny Alexandra | |
dc.contributor.author | Contreras Ortiz, Sonia Helena | |
dc.contributor.researchgroup | Grupo de Investigación Física Aplicada y Procesamiento de Imágenes y Señales- FAPIS | |
dc.contributor.seedbeds | Semillero de Investigación en Visión Artificial | |
dc.date.accessioned | 2025-09-30T13:15:03Z | |
dc.date.issued | 2025-09-01 | |
dc.description | Contiene ilustraciones, gráficos | |
dc.description.abstract | This study presents the development of a prototype noninvasive device for measuring blood glucose levels. It focuses on using photoplethysmography (PPG) and the Beer-Lambert law to measure the absorbance of infrared and red light through the skin of the wrist, offering an alternative to traditional invasive methods, such as commercial glucose meters. This device has the potential to provide a more convenient and less painful approach to continuous glucose monitoring. The study was conducted on a young population in Cartagena, Colombia, where participants used both the prototype device and a commercial glucose meter (Accu-Chek) to compare the results. The data obtained showed a moderate correlation between the two devices (Pearson correlation coefficient of 0.49), with most measurements located in zones A and B of the Parkes error grid, suggesting that the errors are clinically acceptable. However, it is noted that the results should be interpreted with caution in populations with extreme glucose levels. The study concludes that the non-invasive device meets clinical standards for glucose measurement, supporting its future development. It is suggested to move towards a miniaturized wearable device and conduct additional clinical studies to generate more data across a wide range of glucose levels, from hypoglycemia to hyperglycemia. | |
dc.format.extent | 12 | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Tobar-Subia-Contento, L.M., Vargas, R., Romero, L.A., Contreras-Ortiz, S.H. (2026). A Low Power Non-invasive Wrist-Based Approach for Glucose Monitoring. In: Narváez, F.R., Villa, M.N., Díaz, G.M. (eds) Smart Technologies, Systems and Applications. SmartTech-IC 2024. Communications in Computer and Information Science, vol 2392. Springer, Cham. https://doi.org/10.1007/978-3-031-98287-3_10 | |
dc.identifier.doi | 10.1007/978-3-031-98287-3_10 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12585/14201 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.publisher.place | Cartagena, Colombia | |
dc.relation.references | . Calie-Licoa, B.J., Mero-García, M.N., Duran-Cañarte, A.L., et al.: Asociación entre diabetes mellitus tipo 2 e hipertensión arterial en la población adulta de américa latina. MQRInvestigar 7(1), 610–626 (2023) | |
dc.relation.references | Care, R.D.: The Accu-Chek Instant test strips - User’s Manual. Roche Diabetes Care (2024), disponible en: https://www.accu-chek.com, accessed September 2024 L. Tobar-Subia-Contento, et al. | |
dc.relation.references | Célleri, S., Contento, L.M.T.S., Gamez, B., Rosero, C.X.: Non-invasive blood sugar measurement system. In: 2023 IEEE Seventh Ecuador Technical Chapters Meeting (ECTM). pp. 1–7. IEEE (2023) | |
dc.relation.references | Kanellis, V.G.: A review of melanin sensor devices. Biophysical Reviews 11(6), 843–849 (2019) | |
dc.relation.references | Khalid, S.G., Zhang, J., Chen, F., Zheng, D.: Blood pressure estimation using photoplethysmography only: comparison between different machine learning approaches. Journal of healthcare engineering 2018(1), 1548647 (2018) | |
dc.relation.references | Mieles Freire, M., Tobar Subía, L.M., Gamez Aparicio, B.N., Mosquera Canchingre, G.: A non-invasive portable solution to estimate hemoglobin levels in the blood. In: Conference on Information and Communication Technologies of Ecuador. pp. 365–381. Springer (2023) | |
dc.relation.references | Oliver, N., Toumazou, C., Cass, A., Johnston, D.: Glucose sensors: a review of current and emerging technology. Diabetic medicine 26(3), 197–210 (2009) | |
dc.relation.references | Roche Diabetes Care: User Manual for Accu-Chek Instant Glucose Meter. Roche Diabetes Care GmbH, Mannheim, Germany (2019), available at: https://www.accu-chek.com, accessed September 2024 | |
dc.relation.references | Saikevičius, L., Raudonis, V., Dervinis, G., Baranauskas, V.: Non-contact visionbased techniques of vital sign monitoring: Systematic review. Sensors 24(12), 3963 (2024) | |
dc.relation.references | Salem, M., Elkaseer, A., El-Maddah, I.A., Youssef, K.Y., Scholz, S.G., Mohamed, H.K.: Non-invasive data acquisition and iot solution for human vital signs monitoring: Applications, limitations and future prospects. Sensors 22(17), 6625 (2022) | |
dc.relation.references | Susana, E., Ramli, K.: Review of non-invasive blood glucose level estimation based on photoplethysmography and artificial intelligent technology. In: 2021 17th International Conference on Quality in Research (QIR): International Symposium on Electrical and Computer Engineering. pp. 158–163. IEEE (2021) | |
dc.relation.references | Susana, E., Ramli, K., Purnamasari, P.D., Apriantoro, N.H.: Non-invasive classification of blood glucose level based on photoplethysmography using time–frequency analysis. Information 14(3), 145 (2023) | |
dc.relation.references | Swain, S.M., Lata, M., Kumar, S., Mondal, S., Behera, J.K., Mondal, H.: A crosssectional study on the agreement of perfusion indexes measured on different fingers by a portable pulse oximeter in healthy adults. Cureus 14(5) (2022) | |
dc.relation.references | Webb, A.: Principles of Biomedical Instrumentation. Cambridge Texts in Biomedical Engineering, Cambridge University Press (2018), https://books.google.com.co/books?id=waoDwAAQBAJ | |
dc.relation.references | Zavala-Hoppe, A.N., Arteaga-Hernández, K.M., Cañarte-Suarez, T.B., CarrilloCarrasco, P.L., et al.: Factores de riesgo y sus complicaciones en pacientes con diabetes mellitus en latinoamérica. MQRInvestigar 8(1), 1446–1463 (2024) | |
dc.rights | 2026 The Author(s), under exclusive license to Springer Nature Switzerland AG | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 610 - Medicina y salud | |
dc.subject.lemb | Blood glucose -- Measurement | |
dc.subject.lemb | Diabetes -- Diagnosis | |
dc.subject.lemb | Medical devices -- Technological development | |
dc.subject.lemb | hotoplethysmography | |
dc.subject.lemb | Spectrophotometry -- Medical applications | |
dc.subject.lemb | Noninvasive medical procedures | |
dc.subject.lemb | Biomedical engineering -- Prototypes | |
dc.subject.ocde | 3. Ciencias Médicas y de la Salud | |
dc.subject.ods | ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades | |
dc.subject.proposal | Glucose monitoring | eng |
dc.subject.proposal | Photoplethysmography (PPG) | eng |
dc.subject.proposal | Noninvasive Wrist Device | eng |
dc.subject.proposal | Wrist-based measurement | eng |
dc.subject.proposal | Parkes error grid | eng |
dc.title | A Low Power Non-Invasive Wrist-Based Approach for Glucose Monitoring | |
dc.type | Artículo de revista | |
dc.type.coar | http://purl.org/coar/resource_type/c_18cf | |
dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/article | |
dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 4ba7a30d-734c-4a2c-9f6c-7d1edf80e81d | |
relation.isAuthorOfPublication | 48ad794c-8c91-4bf7-9563-3b48428e1feb | |
relation.isAuthorOfPublication | 723611fc-2919-4d41-853e-34942846dd6e | |
relation.isAuthorOfPublication.latestForDiscovery | 4ba7a30d-734c-4a2c-9f6c-7d1edf80e81d |