Publicación:
Biogeochemical study of the periglacial slopes of the Nevado del Ruíz volcano (Colombia) as a terrestrial analog of Mars

dc.contributor.authorM.A. Leal
dc.contributor.authorD. Tovar
dc.contributor.authorM.A. de Pablo
dc.contributor.authorM.A. Bonilla
dc.contributor.authorJ. Bolaños
dc.contributor.authorE. Ruíz
dc.contributor.authorJ. Sanchez
dc.contributor.authorJ. Buitrago
dc.contributor.authorG. Leone
dc.contributor.authorN. Tchegliakova
dc.contributor.authorA. Molina
dc.contributor.authorJ. San Martín
dc.contributor.authorZ. Chacón
dc.contributor.authorX. Abrevaya
dc.contributor.authorF. Vélez
dc.contributor.authorA. Torres
dc.contributor.authorR. Reyes
dc.contributor.authorG. Cancino-Escalante
dc.contributor.authorAcevedo Barrios, Rosa Leonor
dc.contributor.researchgroupGrupo de Investigación Estudios Químicos y Biológicos
dc.contributor.seedbedsSemillero de Investigación en Ciencias Ambientales
dc.date.accessioned2025-08-22T16:11:27Z
dc.date.available2025-08-22
dc.date.issued2025-08-16
dc.descriptionIncluye mapas y gráficos
dc.description.abstractThe Refugio sector of the Nevado del Ruiz Volcano, located in Colombia, has been the focus of multidisciplinary exploration aimed at understanding its geology, geochemistry, mineralogy, and microbiology, with the objective of evaluating its relevance as a potential terrestrial analog of astrobiological interest for Mars. Through detailed physicochemical analyses of soil samples, variability in properties such as pH, electrical conductivity, and nutrient content has been characterized, revealing the diversity of microenvironments within this volcanic region. Comparison with analog samples from Mars, taken from the ISAR collection, has highlighted significant differences in geochemical composition, particularly in MnO, Fe₂O₃, and SiO₂ content, underscoring the importance of Nevado del Ruiz as a key site for studying Martian geological processes. Furthermore, CRISM spectroscopy analyses have confirmed the presence of minerals similar to those found in Mawrth Vallis on Mars, further supporting the site’s validity as a terrestrial analog for planetary studies. Finally, the isolation of bacterial species identified as Klebsiella spallanzanii and Bacillus cereus, two oligotrophic and psychrophilic microorganisms, capable of phosphate solubilization and nitrogen fixation, found at Nevado del Ruiz support the development of biological models of astrobiological relevance. Together with the other findings, this evidence reinforces the importance of Nevado del Ruiz as a natural laboratory for astrobiology and space exploration, with the potential to provide information for future planetary exploration missions.
dc.description.researchareaMicrobiología y toxicología ambiental
dc.description.tableofcontents1.Introduction 2.Materials and methods 3.Results 4. Discussion 5.Conclusions References
dc.description.technicalinfoNo Aplica
dc.format.extent16 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.citationM.A. Leal, D. Tovar, M.A. de Pablo, M.A. Bonilla, J. Bolaños, E. Ruíz, J. Sánchez, J. Buitrago, G. Leone, N. Tchegliakova, A. Molina, J. San Martín, Z. Chacón, X. Abrevaya, F. Vélez, A. Torres, R. Reyes, G. Cancino-Escalante, R. Acevedo-Barrios, Biogeochemical study of the periglacial slopes of the Nevado del Ruíz volcano (Colombia) as a terrestrial analog of Mars, Icarus, Volume 443,2026,116783, ISSN 0019-1035, https://doi.org/10.1016/j.icarus.2025.116783.
dc.identifier.issn10.1016/j.icarus.2025.116783
dc.identifier.urihttps://hdl.handle.net/20.500.12585/14177
dc.language.isoeng
dc.publisher.placeColombia
dc.relation.referencesAbbas, A.A., Planchon, S., Jobin, M., Schmitt, P., 2014. Absence of oxygen affects the capacity to sporulate and the spore properties of Bacillus cereus. Food Microbiol. 42, 122–131.
dc.relation.referencesBaker, V.R., 2014. Terrestrial analogs, planetary geology, and the nature of geological reasoning. Planet. Space Sci. 95, 5–10.
dc.relation.referencesBakker, J.G., Salomons, J.B., 1989. A palaeoecological record of a volcanic soil sequence in the Nevado del Ruiz area, Colombia. Rev. Palaeobot. Palynol. 60 (1–2), 149–163.
dc.relation.referencesBaldani, J.I., Reis, V.M., Videira, S.S., Boddey, L.H., Baldani, V.L.D., 2014. The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi- solid media: a practical guide for microbiologists. Plant Soil 384, 413–431. https:// doi.org/10.1007/s11104-014-2186-6.
dc.relation.referencesBandfield, J.L., Hamilton, V.E., Christensen, P.R., 2000. A global view of Martian surface compositions from MGS-TES. Science 287 (5458), 1626–1630.
dc.relation.referencesBendia, A.G., Araujo, G.G., Pulschen, A.A., Contro, B., Duarte, R.T., Rodrigues, F., Pellizari, V.H., 2018. Surviving in hot and cold: psychrophiles and thermophiles from Deception Island volcano, Antarctica. Extremophiles 22, 917–929.
dc.relation.referencesBishop, J.L., Rampe, E.B., 2016. Evidence for a changing Martian climate from the mineralogy at Mawrth Vallis. Earth Planet. Sci. Lett. 448, 42–48. https://doi.org/ 10.1016/j.epsl.2016.04.031
dc.relation.referencesBishop, J.L., Loizeau, D., McKeown, N.K., Saper, L., Dyar, M.D., Des Marais, D.J., Murchie, S.L., 2013. What the ancient phyllosilicates at Mawrth Vallis can tell us about possible habitability on early Mars. Planet. Space Sci. 86, 130–149.
dc.relation.referencesBoidi, F.J., Mlewski, E.C., Gomez, F.J., G´erard, E., 2020. Characterization of microbialites and microbial mats of the Laguna Negra hypersaline lake (Puna of Catamarca, Argentina). In: Microbial Ecosystems in Central Andes Extreme Environments: Biofilms, Microbial Mats, Microbialites and Endoevaporites, pp. 183–203. https://doi.org/10.1007/978-3-030-36192-1_13.
dc.relation.referencesBost, N., 2012. Geochemical and Mineralogical Analysis of Mars Analogue Materials and the Creation of the International Space Analogue Rock Store (ISAR). Doctoral dissertation. Universit´e d’Orl´eans.
dc.relation.referencesBowman, J.P., McCammon, S.A., Brown, M.V., Nichols, D.S., McMeekin, T.A., 1997. Diversity and association of psychrophilic bacteria in Antarctic Sea ice. Appl. Environ. Microbiol. 63 (8), 3068–3078.
dc.relation.referencesCarter, J., Poulet, F., Bibring, J.P., Mangold, N., Murchie, S., 2013. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res. Planets 118 (4), 831–858. https://doi.org/10.1029/ 2012JE004145.
dc.relation.referencesEhlmann, B.L., Mustard, J.F., Clark, R.N., Swayze, G.A., Murchie, S.L., 2011. Evidence for low-grade metamorphism, hydrothermal alteration, and diagenesis on Mars from phyllosilicate mineral assemblages. Clay Clay Miner. 59 (4), 359–377. https://doi. org/10.1346/CCMN.2011.0590402.
dc.relation.referencesEyherabide, M., Saínz, H., Barbieri, P., Echeverría, H., 2014. Comparaci´on de m´etodos para determinar carbono org´anico en suelo. Ciencia del suelo 32 (1), 13–19.
dc.relation.referencesFlórez, A., 1986. Geomorfología del ´area Manizales-Chinchin´a, cordillera Central, Colombia. Ph.D. Thesis. Universidad de ´Amsterdam, ´Amsterdam, p. 158.
dc.relation.referencesFlórez, A., 1989. Evidencias de inestabilidad en los sistemas morfog´enicos de alta monta˜na. Rev. Colombia, sus Gentes y Regiones, 13, pp. 16–32. Bogot´a.
dc.relation.referencesFlórez, A., 1992. Los nevados de Colombia: Glaciales y glaciaciones. In: An´alisis Geogr´aficos, 22. Instituto Geogr´afico Agustin Codazzi, Bogot´a, pp. 1–95.
dc.relation.referencesFlórez, A., 2000. Geomorfología de los p´aramos. In: Rangel, O. (Ed.), Colombia Diversidad Bi´otica III. La regi´on Paramuna. Universidad Nacional de Colombia, Bogot´a.
dc.relation.referencesFoucher, F., Hickman-Lewis, K., Hutzler, A., Joy, K.H., Folco, L., Bridges, J.C., Westall, F., 2021. Definition and use of functional analogues in planetary exploration. Planet. Space Sci. 197, 105162.
dc.relation.referencesGarcía, J., Ballesteros, M., 2006. Evaluaci´on de los par´ametros de calidad para la determinaci´on de f´osforo disponible en suelos. Revista Colombiana de Química 35 (1), 81–89.
dc.relation.referencesGarcía, L.M., et al., 2023. Microbial diversity and activity in volcanic environments: insights from Nevado del Ruiz. Appl. Environ. Microbiol. 89 (7), e03245-22.
dc.relation.referencesGiraldo G´omez, L., Mejía Fern´andez, F., Zambrano N´ajera, J.D.C., 2018. Red de Estaciones Meteorol´ogicas e Hidrometeorol´ogicas Autom´aticas en el Parque Nacional Natural Los Nevados. Instituto de Estudios Ambientales (IDEA).
dc.relation.referencesGómez, F., 2015. Terrestrial Analog. In: Gargaud, In M., William, M., Amils, R., Henderson, J., Daniele, L., Cernicharo, J., Michel, V. (Eds.), Encyclpedia of Astrobiology. Springer-Verlag, Berlin, p. 2810.
dc.relation.referencesGómez, F.J., Kah, L.C., Bartley, J.K., Astini, R.A., 2014. Microbialites in a high-altitude Andean lake: multiple controls on carbonate precipitation and lamina accretion. Palaios 29 (6), 233–249. https://doi.org/10.2110/palo.2013.049.
dc.relation.referencesGonzález, C.V., S´anchez, F.J., 2023. Applications of microbial research in volcanic environments. Trends Biotechnol. 41 (5), 532–545.
dc.relation.referencesGross, C., Al-Samir, M., Bishop, J.L., Poulet, F., Postberg, F., Schubert, D., 2024. Prospecting in-situ resources for future crewed missions to Mars. Acta Astronaut. 223, 15–24.
dc.relation.referencesGupta, A., Saxena, A.K., Gopal, M., Tilak, K.V.B.R., 2003. Effects of co-inoculation of plant growth promoting rhizobacteria and Bradyrhizobium sp.(Vigna) on growth and yield of green gram [Vigna radiata (L.) Wilczek]. Tropic. Agricult. London Then Trinidad 80 (1), 28–35.
dc.relation.referencesHandy, D., Hummerick, M.E., Dixit, A.R., Ruby, A.M., Massa, G., Palmer, A., 2021. Identification of plant growth promoting bacteria within space crop production systems. Front. Astron. Space Sci. 8, 735834.
dc.relation.referencesHausrath, E.M., Adcock, C.T., Gainey, S.R., Steiner, M.H., Tu, V.M., 2014. Experimental evidence suggests significant aqueous alteration and abundant phosphorus release on Mars. In: Eighth International Conference on Mars. Abstract 1310.
dc.relation.referencesHausrath, E.M., Adcock, C.T., Berger, J.A., Cycil, L.M., Kizovski, T.V., McCubbin, F.M., Clark, B.C., 2024. Phosphates on mars and their importance as igneous, aqueous, and astrobiological indicators. Minerals 14 (6), 591.
dc.relation.referencesHazen, R.M., Sverjensky, D.A., 2010. Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb. Perspect. Biol. 2 (5), a002162.
dc.relation.referencesHettrich, S., Napier, L., Felix, C.V., Kolodziejczyk, A., Perakis, N., Elorza, I.M., APO-G team., 2015. The importance of analog planetary research for success and safety of human and robotic space missions. In: Space Safety Is no Accident: The 7th IAASS Conference. Springer International Publishing, pp. 285–293.
dc.relation.referencesHughes, S.S., Haberle, C.W., Kobs Nawotniak, S.E., Sehlke, A., Garry, W.B., Elphic, R.C., Lim, D.S., 2019. Basaltic terrains in Idaho and Hawai ‘i as planetary analogs for Mars geology and astrobiology. Astrobiology 19 (3), 260–283. https://doi.org/10.1089/ ast.2018.1847.
dc.relation.referencesInstituto geográfico Agustín Codazzi IGAC, 2006. M´etodos analíticos del laboratorio de suelos, Sexta ed. Instituto geogr´afico Agustín Codazzi, Bogot´a.
dc.relation.referencesIrwin III, R.P., Tooth, S., Craddock, R.A., Howard, A.D., de Latour, A.B., 2014. Origin and development of theater-headed valleys in the Atacama Desert, northern Chile: morphological analogs to martian valley networks. Icarus 243, 296–310. https://doi. org/10.1016/j.icarus.2014.08.012.
dc.relation.referencesKereszturi, A., Aszal´os, J.M., Zs, H., Igneczi, ´A., Zs, K., Cs, K., Nagy, B., 2022. Wind-snow interactions at the Ojos del Salado region as a potential Mars analogue site in the Altiplano-Atacama desert region. Icarus 378, 114941. https://doi.org/10.1016/j. icarus.2022.114941.
dc.relation.referencesKral, T.A., Altheide, T.S., Lueders, A.E., Schuerger, A.C., 2011. Low pressure and desiccation effects on methanogens: implications for life on Mars. Planet. Space Sci. 59 (2–3), 264–270.
dc.relation.referencesKumari, A., Prakash, J., 2024. Unveiling nature’s extreme engineers: extremophiles and their impact on the nitrogen cycle. Int. J. Biol. Med. Res. 15 (3), 7862–7864
dc.relation.referencesKurokawa, H., Kurosawa, K., Usui, T., 2018. A lower limit of atmospheric pressure on early Mars inferred from nitrogen and argon isotopic compositions. Icarus 299, 443–459.
dc.relation.referencesLalla, E.A., L´opez-Reyes, G., Sansano, A., Sanz-Arranz, A., Schmanke, D., Klingelh¨ofer, G., Rull-P´erez, F., 2015. Estudio espectrosc´opico y DRX de afloramientos terrestres volc´anicos en la isla de Tenerife como posibles an´alogos de la geología marciana. Estud. Geol. 71 (2), e035. https://doi.org/10.3989/ egeol.41927.354.
dc.relation.referencesLeal, M.A., Tovar, D., Infante, A., Barriga, O., Ruíz, E., S´anchez, J., Melgarejo, L.M., 2025a. Phosphate solubilization by microorganisms in pyroclastic material from half Moon Island in Antarctica: perspectives for astrobiology. Polar Biol. 48 (1), 29.
dc.relation.referencesLeal, M.A., Tovar, D., de Pablo Hernandez, M.´A., Bonilla, M.A., Leone, G., Tchegliakova, N., San Martín, J.T., 2025b. The potential of Deception Island, Antarctica, as a multifunctional Martian analogue of astrobiological interest. International Journal of AstrobiologyInt. J. Astrobiol. 24, e3.
dc.relation.referencesLorenz, R.D., Radebaugh, J., 2016. Dust devils in thin air: Vortex observations at a high- elevation Mars analog site in the Argentinian Puna. Geophys. Res. Lett. 43 (8), 4010–4016. https://doi.org/10.1002/2015GL067412.
dc.relation.referencesMartins, Z., Cottin, H., Kotler, J.M., Carrasco, N., Cockell, C., De la Torre, R., Westall, F., 2017. Earth as a tool for astrobiology - a European perspective. Space Sci. Rev. 209, 43–81. https://doi.org/10.1007/s11214-017-0369-1
dc.relation.referencesMerla, C., Rodrigues, C., Passet, V., Corbella, M., Thorpe, H.A., Kallonen, T.V., Brisse, S., 2019. Description of Klebsiella spallanzanii sp. nov. and of Klebsiella pasteurii sp. nov. Front. Microbiol. 10, 2360.
dc.relation.referencesMouginis-Mark, P.J., 2021. What makes a great terrestrial planetary analog?. In: Terrestrial Analogs 2021 (LPI Contrib. No. 2595). Lunar and Planetary Institute, Virtual, p. 8021.
dc.relation.referencesMoyer, C.L., Morita, R.Y., 2007. Psychrophiles and psychrotrophs. Encyclop. Life Sci. 1 (6)
dc.relation.referencesNavarro-Alarc´on, Martínez L., Valencia, L., Ceballos, J., Narv´aez, B., Pulgarín, B., Correa, A., Pardo, N., 2014. Geología y estratigrafía del complejo volc´anico Nevado del Ruiz. Informe final, Bogot´a–Manizales–Popay´an. Servicio Geol´ogico Colombiano, pp. 94–381
dc.relation.referencesNicholson, W.L., Krivushin, K., Gilichinsky, D., Schuerger, A.C., 2013. Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for earth microbes on Mars. Proc. Natl. Acad. Sci. 110 (2), 666–671.
dc.relation.referencesPantazidis, A., Baziotis, I., Solomonidou, A., Manoutsoglou, E., Palles, D., Kamitsos, E., Asimow, P., 2019. Santorini volcano as a potential Martian analogue: the Balos cove basalts. Icarus 325, 128–140. https://doi.org/10.1016/j.icarus.2019.02.026
dc.relation.referencesPérez, A.M., G´omez, E.S., 2023. Influence of volcanic activity on soil chemistry: insights from Nevado del Ruiz. Geoderma 310, 45–58.
dc.relation.referencesPérez, R.G., Martínez, S., 2023. Adaptation of bacteria to extreme environments: evidence from Nevado del Ruiz Volcano. Extremophiles 15 (2), 123–135.
dc.relation.referencesPieters, C.M., Hiroi, T., Pratt, S.F., Patterson, B., 2004. Reflectance Experiment Laboratory (RELAB) Description and User’s Manual.
dc.relation.referencesPoulet, F., Gross, C., Horgan, B., Loizeau, D., Bishop, J.L., Carter, J., Orgel, C., 2020. Mawrth Vallis, Mars: a fascinating place for future in situ exploration. Astrobiology 20 (2), 199–234.
dc.relation.referencesRayo Rocha, L.D.P., 2012. Evoluci´on geoquímica y t´ermica del volc´an Nevado del Ruiz, Colombia. Departamento de Geociencias.
dc.relation.referencesRodríguez, M.E., L´opez, D.A., 2023. Bacterial adaptation to low temperatures in volcanic environments: insights from Nevado del Ruiz. Environ. Microbiol. Rep. 12 (4), 345–357.
dc.relation.referencesRogers, D., Christensen, P.R., 2003. Age relationship of basaltic and andesitic surface compositions on Mars: analysis of high-resolution TES observations of the northern hemisphere. J. Geophys. Res. Planets 108 (E4).
dc.relation.referencesShevchenko, A., 2025. Assessment of the Effect of Clay Minerals on Biomarker Detection in Evaporites Using Raman Spectrometry. Univerzity Karlovy
dc.relation.referencesSmith, J.D., Jones, A.B., 2023. Geochemical characterization of volcanic rocks from Nevado del Ruiz volcano. J. Volcanol. Geotherm. Res. 45 (3), 210–225.
dc.relation.referencesTangari, A.C., Marinangeli, L., Scarciglia, F., Pompilio, L., Piluso, E., 2020. Volcanic holocrystalline bedrock and hydrothermal alteration: a terrestrial analogue for Mars. Minerals 10 (12), 1082. https://doi.org/10.3390/min10121082.
dc.relation.referencesTen Kate, I.L., Armstrong, R., Bernhardt, B., Blumers, M., Craft, J., Boucher, D., Zacny, K., 2013. Mauna kea, Hawaii, as an analog site for future planetary resource exploration: results from the 2010 ILSO-ISRU field-testing campaign. J. Aerosp. Eng. 26 (1), 183–196. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000200
dc.relation.referencesToro Toro, L.M., Borrero-Pe˜na, C.A., Ayala Carmona, L.F., 2010. Petrografía y geoquímica de las rocas ancestrales del volc´an Nevado del Ruiz. Boletín de Geología 32 (1), 95–105.
dc.relation.referencesValdivia-Silva, J.E., Navarro-Gonz´alez, R., Ortega-Gutierrez, F., Fletcher, L.E., Perez- Montano, S., Condori-Apaza, R., McKay, C.P., 2011. Multidisciplinary approach of the hyperarid desert of pampas de La Joya in southern Peru as a new Mars-like soil analog. Geochim. Cosmochim. Acta 75 (7), 1975–1991. https://doi.org/10.1016/j. gca.2011.01.017.
dc.relation.referencesVeneranda, M., Lopez-Reyes, G., Saiz, J., Manrique-Martinez, J.A., Sanz-Arranz, A., Medina, J., Rull, F., 2021. ExoFiT trial at the Atacama Desert (Chile): Raman detection of biomarkers by representative prototypes of the ExoMars/Raman laser spectrometer. Sci. Rep. 11 (1), 1461. https://doi.org/10.1038/s41598-021-81014-z.
dc.relation.referencesViviano, C.E., Seelos, F.P., Murchie, S.L., Kahn, E.G., Seelos, K.D., Taylor, H.W., Morgan, M.F., 2014. Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars. J. Geophys. Res. Planets 119 (6), 1403–1431.
dc.relation.referencesWhitney, D.L., Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. Am. Mineral. 95 (1), 185.
dc.relation.referencesWills, D.E.S., Monaghan, E.P., Foing, B.H., 2009. Characterisation of sites of astrobiology interest for Mars landers and sample return missions. Geophy. Res. Abstracts 11 (EGU2009-11568-1).
dc.relation.referencesXu, A., Buchanan, R.L., 2019. Evaluation of sampling methods for the detection of pathogenic bacteria on pre-harvest leafy greens. Food Microbiol. 77, 137–145.
dc.relation.referencesYadav, A.N., Sachan, S.G., Verma, P., Kaushik, R., Saxena, A.K., 2016. Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub- glacial lakes of NW Indian Himalayas. J. Basic Microbiol. 56 (3), 294–307. https:// doi.org/10.1002/jobm.201500230.
dc.relation.referencesZuber, M.T., Solomon, S.C., Phillips, R.J., Smith, D.E., Tyler, G.L., Aharonson, O., Zhong, S., 2000. Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science 287 (5459), 1788–1793.
dc.rightsBreve declaración de derechos de autoreng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ocde1. Ciencias Naturales
dc.subject.odsODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
dc.subject.proposalAstrobiology
dc.subject.proposalGeological processes
dc.subject.proposalMars
dc.subject.proposalSurface
dc.subject.proposalSpectroscopy
dc.titleBiogeochemical study of the periglacial slopes of the Nevado del Ruíz volcano (Colombia) as a terrestrial analog of Mars
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_18cf
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dcterms.audienceComunidad académica y comunidad científica
dspace.entity.typePublication
relation.isAuthorOfPublication74ceb186-b60b-4210-9548-9a89e1a8f37b
relation.isAuthorOfPublication.latestForDiscovery74ceb186-b60b-4210-9548-9a89e1a8f37b

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1-s2.0-S0019103525003318-main publicado.pdf
Tamaño:
11.9 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: