Publicación:
Calibration of multimodal 3D structured-light systems using digital features

dc.contributor.authorBenjumea Eberto
dc.contributor.authorVargas Ramírez, Raúl Andrés
dc.contributor.authorQuintero Fernando
dc.contributor.authorJuarez-Salazar Rigoberto
dc.contributor.authorMarrugo Hernández, Andrés Guillermo
dc.date.accessioned2025-09-08T16:12:30Z
dc.date.issued2025-08-21
dc.descriptionContiene ilustraciones, gráficos
dc.description.abstractCalibration of multimodal 3D imaging systems that combine structured light with an additional modality typically relies on targets constructed with physical features that must be detectable by all imaging modalities. Such targets can be costly to produce and are prone to fabrication defects that degrade accuracy. Furthermore, reflections, light saturation, and the limited resolution of non-visible-range cameras complicate reliable feature detection. We present a calibration approach that uses digital features generated by a screen, a mirror, and an auxiliary camera—removing the need for specialized targets with physical features. This setup recovers the intrinsic parameters of the visible camera as well as the intrinsic and extrinsic parameters of both the projector and the additional-modality camera. To illustrate our method, we employ a thermal camera, though the procedure extends readily to other imaging modalities. Experimental results show that the proposed solution achieves a 0.07 mm root-mean-square error in 3D reconstructions, matching conventional techniques. By eliminating the requirement for physical features for targets, this approach reduces costs, avoids fabrication flaws, and simplifies multimodal feature detection.
dc.format.extent14 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.ark10.1364/AO.569536
dc.identifier.citationEberto Benjumea, Raúl Vargas, Fernando Quintero, Rigoberto Juarez-Salazar, and Andres G. Marrugo, "Calibration of multimodal 3D structured-light systems using digital features," Appl. Opt. 64, 7333-7343 (2025) https://doi.org/10.1364/AO.569536
dc.identifier.urihttps://hdl.handle.net/20.500.12585/14187
dc.language.isoeng
dc.publisherApplied Optics
dc.relation.referencesA. G. Marrugo, F. Gao, and S. Zhang, “State-of-the-art active optical techniques for three-dimensional surface metrology: a review [invited],” J. Opt. Soc. Am. A 37, B60–B77 (2020)
dc.relation.referencesR. Juarez-Salazar, G. A. Rodriguez-Reveles, S. Esquivel-Hernandez, and V. H. Diaz-Ramirez, “Three-dimensional spatial point computation in fringe projection profilometry,” Opt. Lasers Eng. 164 (2023).
dc.relation.referencesJ. Meza, S. H. Contreras-Ortiz, L. A. R. Perez, and A. G. Marrugo, “Three-dimensional multimodal medical imaging system based on freehand ultrasound and structured light,” Opt. Eng. 60, 054106 (2021). Publisher: SPIE.
dc.relation.referencesB. Li, “High-speed 3d optical sensing for manufacturing research and industrial sensing applications,” Trans. on Energy Syst. Eng. Appl. 3, 1–12 (2022)
dc.relation.referencesY. An and S. Zhang, “High-resolution, real-time simultaneous 3D surface geometry and temperature measurement,” Opt. Express 24, 14552–14563 (2016). Publisher: Optica Publishing Group.
dc.relation.referencesR. Y. Jablonski, C. A. Osnes, B. S. Khambay, et al., “An in-vitro study to assess the feasibility, validity and precision of capturing oncology facial defects with multimodal image fusion,” The Surg. 16, 265–270 (2018).
dc.relation.referencesR. Ramm, P. de Dios Cruz, S. Heist, et al., “Fusion of Multimodal Imaging and 3D Digitization Using Photogrammetry,” Sensors 24, 2290 (2024). Number: 7 Publisher: Multidisciplinary Digital Publishing Institute.
dc.relation.referencesR. Juarez-Salazar, J. Zheng, and V. H. Diaz-Ramirez, “Distorted pinhole camera modeling and calibration,” Appl. Opt. 59, 11310–11318 (2020). Publisher: Optica Publishing Group.
dc.relation.referencesD. M. McClatchy, E. J. Rizzo, J. Meganck, et al., “Calibration and analysis of a multimodal micro-CT and structured light imaging system for the evaluation of excised breast tissue,” Phys. Med. & Biol. 62, 8983 (2017). Publisher: IOP Publishing
dc.relation.referencesS. Feng, C. Zuo, L. Zhang, et al., “Calibration of fringe projection profilometry: A comparative review,” Opt. lasers engineering 143, 106622 (2021).
dc.relation.references. Z. Qiu, J. Martínez-Sánchez, P. Arias-Sánchez, and R. Rashdi, “External multi-modal imaging sensor calibration for sensor fusion: A review,” Inf. Fusion 97, 101806 (2023)
dc.relation.referencesS. Sreeharan, H. Wang, K. Hirakawa, and B. Li, “Bayesian calibration of digital fringe projection systems considering both aleatoric and epistemic uncertainties,” Opt. Lasers Eng. 193, 109098 (2025).
dc.relation.referencesM. Landmann, S. Heist, P. Dietrich, et al., “High-speed 3D thermography,” Opt. Lasers Eng. 121, 448–455 (2019).
dc.relation.referencesA. ElSheikh, B. A. Abu-Nabah, M. O. Hamdan, and G.-Y. Tian, “Infrared Camera Geometric Calibration: A Review and a Precise Thermal Radiation Checkerboard Target,” Sensors 23, 3479 (2023).
dc.relation.referencesE. Benjumea, R. Vargas, R. Juarez-Salazar, and A. G. Marrugo, “Toward a target-free calibration of a multimodal structured light and thermal imaging system,” in Dimensional Optical Metrology and Inspection for Practical Applications XIII, vol. 13038 (SPIE, 2024), pp. 54–59
dc.relation.referencesJ.-Y. Bouguet, “Camera Calibration Toolbox for Matlab,” (2022). Language: en.
dc.relation.referencesJ. J. A. Taimal, B. B. Cortes, and A. D. R. Girón, “Software Tool for the Extrinsic Calibration of Infrared and RGBD Cameras Applied to Thermographic Inspection,” Ingeniería 28, e18145–e18145 (2023). Number: 1.
dc.relation.referencesZ. Zhang, “A flexible new technique for camera calibration,” IEEE Trans. on Pattern Anal. Mach. Intell. 22, 1330–1334 (2000). Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence
dc.relation.referencesS. Barone, A. Paoli, and A. V. Razionale, “Assessment of chronic wounds by three-dimensional optical imaging based on integrating geometrical, chromatic, and thermal data,” Proc. Inst. Mech. Eng. Part H, J. Eng. Med. 225, 181–193 (2011).
dc.relation.referencesM. Rosenberger, C. Zhang, Y. Zhang, and G. Notni, “3D high-resolution multimodal imaging system for real-time applications,” in Dimensional Optical Metrology and Inspection for Practical Applications IX, vol. 11397 (SPIE, 2020), pp. 21–30
dc.relation.referencesR. Yang and Y. Chen, “Design of a 3-D Infrared Imaging System Using Structured Light,” IEEE Trans. on Instrum. Meas. 60, 608–617 (2011). Conference Name: IEEE Transactions on Instrumentation and Measurement
dc.relation.referencesR. Juarez-Salazar, S. Esquivel-Hernandez, and V. H. Diaz-Ramirez, “Are camera, projector, and camera–projector calibrations different?” Appl. Opt. 62, 5999–6006 (2023)
dc.relation.referencesR. Vargas, A. G. Marrugo, S. Zhang, and L. A. Romero, “Hybrid calibration procedure for fringe projection profilometry based on stereo vision and polynomial fitting,” Appl. Opt. 59, D163–D169 (2020).
dc.relation.referencesR. Vargas, L. A. Romero, S. Zhang, and A. G. Marrugo, “Pixel-wise rational model for a structured light system,” Opt. Lett. 48, 2712–2715 (2023)
dc.relation.referencesS. Zhang, “Flexible structured light system calibration method with all digital features,” Opt. Express 31, 17076–17086 (2023). Publisher: Optica Publishing Group
dc.relation.referencesY. Yang, Y.-H. Liao, I. Bortins, et al., “Unidirectional structured light system calibration with auxiliary camera and projector,” Opt. Lasers Eng. 175, 107984 (2024).
dc.relation.referencesW. Xing, S. Lin, L. Yang, and J. Pan, “Target-Free Extrinsic Calibration of Event-LiDAR Dyad Using Edge Correspondences,” IEEE Robotics Autom. Lett. 8, 4020–4027 (2023).
dc.relation.referencesB. Elnashef and S. Filin, “Target-free calibration of flat refractive imaging systems using two-view geometry,” Opt. Lasers Eng. 150, 106856 (2022).
dc.relation.references. C. Zuo, S. Feng, L. Huang, et al., “Phase shifting algorithms for fringe projection profilometry: A review,” Opt. Lasers Eng. 109, 23–59 (2018).
dc.relation.referencesS. Zhang, “Absolute phase retrieval methods for digital fringe projection profilometry: A review,” Opt. Lasers Eng. 107, 28–37 (2018).
dc.relation.referencesS. Zhang and P. S. Huang, “Novel method for structured light system calibration,” Opt. Eng. 45, 083601–083601 (2006)
dc.relation.referencesM. J, “Find vertices in image of convex polygon,” MATLAB Central File Exchange (2025). [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/ 74181-find-vertices-in-image-of-convex-polygon. [Accessed: Feb. 18, 2025].
dc.relation.referencesY. Luo, X. Wang, Y. Liao, et al., “A Review of Homography Estimation: Advances and Challenges,” Electronics 12, 4977 (2023)
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.lemStructured light
dc.subject.lembThree-dimensional imaging
dc.subject.lembImaging systems -- Calibration
dc.subject.lembOptical measurements
dc.subject.lembMultimodal imaging systems
dc.subject.lembThermal imaging
dc.subject.lembComputer vision
dc.subject.lembFeature detection (Image processing)
dc.subject.proposalCalibration
dc.subject.proposalMultimodal 3D imaging systems
dc.subject.proposalStructured light
dc.subject.proposalAdditional modality
dc.subject.proposalDigital targets
dc.subject.proposalMultimodal feature detection
dc.titleCalibration of multimodal 3D structured-light systems using digital features
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_18cf
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication4ba7a30d-734c-4a2c-9f6c-7d1edf80e81d
relation.isAuthorOfPublication651b0410-2e8f-4894-87bc-d3d803c92eab
relation.isAuthorOfPublication.latestForDiscovery4ba7a30d-734c-4a2c-9f6c-7d1edf80e81d

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Applied_Optics___Digital_Features.pdf
Tamaño:
4.51 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: