Publicación: Clean energy transition in insular communities: wind resource evaluation and VAWT design using CFD and statistics
| dc.contributor.author | Fabregas, Jonathan | |
| dc.contributor.author | Palacios-Pineda, Luis Manuel, | |
| dc.contributor.author | Palencia Díaz, Argemiro | |
| dc.contributor.author | Abuchar Curi, Alfredo Miguel | |
| dc.contributor.researchgroup | Grupo de Investigación Energías Alternativas y Fluidos (EOLITO) | |
| dc.date.accessioned | 2025-10-31T20:30:50Z | |
| dc.date.issued | 2025-10-30 | |
| dc.description | Contiene ilustraciones, gráficos | |
| dc.description.abstract | Vertical-AxisWind Turbines (VAWTs) are efficient solutions for renewable energy generation, especially in regions with variable wind conditions. This study presents an optimized design of a small-scale H-type VAWT through the integration of Design of Experiments (DOE) and Computational Fluid Dynamics (CFD), using a fractional factorial 2k−p approach to evaluate the influence of geometric and operational parameters on power output and power coefficient (Cp), which ranged from 0.15 to 0.35. The research began with a comprehensive assessment of renewable resources in Isla Fuerte, Colombia. Solar analysis revealed an average of 5.13 Peak Sun Hours (PSHs), supporting the existing 175 kWp photovoltaic system. Wind modeling, based on meteorological data andWeibull distribution, showed speeds between 2.79 m/s and 5.36 m/s, predominantly from northeast to northwest. Under these conditions, the NACA S1046 airfoil was selected for its aerodynamic suitability. The turbine achieved power outputs from 0.46 W to 37.59 W, with stabilization times analyzed to assess dynamic performance. This initiative promotes environmental sustainability by reducing reliance on Diesel Generators (DGs) and empowering local communities through participatory design and technical training. The DOE-CFD methodology offers a replicable model for energy transition in insular regions of developing countries, linking technical innovation with social development and education. | eng |
| dc.description.researcharea | Energías alternativas | |
| dc.description.tableofcontents | Article Title 1. Introduction 2. Materials and Methods 3. Results and Discussion 4. Conclusions References | eng |
| dc.format.extent | 27 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Fábregas-Villegas, J.; Palacios-Pineda, L.M.; Abuchar-Curi, A.M.; Palencia-Díaz, A. Clean Energy Transition in Insular Communities: Wind Resource Evaluation and VAWT Design Using CFD and Statistics. Sustainability 2025, 17, 9663. https://doi.org/10.3390/su17219663 | |
| dc.identifier.doi | https://doi.org/10.3390/su17219663 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/14268 | |
| dc.identifier.url | https://www.mdpi.com/2071-1050/17/21/9663 | |
| dc.language.iso | eng | |
| dc.publisher | Sustainability | |
| dc.relation.references | Lu, Y.; Khan, Z.A.; Alvarez-Alvarado, M.S.; Zhang, Y.; Huang, Z.; Imran, M. A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources. Sustainability 2020, 12, 5078. | |
| dc.relation.references | Lu, Y.; Khan, Z.A.; Alvarez-Alvarado, M.S.; Zhang, Y.; Huang, Z.; Imran, M. A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources. Sustainability 2020, 12, 5078. | |
| dc.relation.references | Fábregas, J.; Tovar, I.; Palencia, A. Electrification as a development and sustainability approach in rural areas using renewable energy sources. Global J. Environ. Sci. Manag. 2024, 10, 2115–2126 | |
| dc.relation.references | Fabregas, J.; Palencia, A. The significance of clean energy, education, and environmental management in fostering a sustainable future. Global J. Environ. Sci. Manag. 2025, 11, 1001–1018 | |
| dc.relation.references | Abraham, A.M.; Anil Lal, S. Multi-Objective Optimization of an Axial Flow Turbine Design Using Surrogate Modeling and Genetic Algorithm. ASME Open J. Eng. 2022, 1, 011022. | |
| dc.relation.references | Rhenals, M.; Robledo, A.; Fábregas, J.; Carpintero, J. Analysis of Fluid Pressure Drop through a Globe Valve Using Computational Fluid Dynamics and Statistical Techniques. J. Adv. Res. Fluid Mech. Therm. Sci. 2024, 115, 70–82. | |
| dc.relation.references | Sakib, M.S.; Griffith, D.T. Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines. Wind Energy Sci. 2022, 7, 677–696. | |
| dc.relation.references | Wang, W.Y.; Ferng, Y.M. Numerical model for noise reduction of small vertical-axis wind turbines. Wind Energy Sci. 2024, 9, 651–664. | |
| dc.relation.references | Wi´sniewski, J.; Rogowski, K.; Gumowski, K.; Szumbarski, J. Wind tunnel comparison of four VAWT configurations to test load-limiting concept and CFD validation. Wind Energy Sci. 2021, 6, 287–294. | |
| dc.relation.references | Zamre, P.; Lutz, T. Computational-fluid-dynamics analysis of a Darrieus vertical-axis wind turbine installation on the rooftop of buildings under turbulent-inflow conditions. Wind Energy Sci. 2022, 7, 1661–1677 | |
| dc.relation.references | Day, H.; Ingham, D.; Ma, L.; Pourkashanian, M. Adjoint Based Optimisation for Efficient VAWT Blade Aerodynamics Using CFD. J. Wind. Eng. Ind. Aerodyn. 2021, 208, 104431. | |
| dc.relation.references | Attie, C.; ElCheikh, A.; Nader, J.; Elkhoury, M. Performance Enhancement of a Vertical Axis Wind Turbine Using a Slotted Deflective Flap at the Trailing Edge. Energy Convers. Manag. 2022, 273, 116388 | |
| dc.relation.references | Shen, Z.; Gong, S.; Zu, H.; Guo, W. Multi-Objective Optimization Study on the Performance of Double Darrieus Hybrid Vertical Axis Wind Turbine Based on DOE-RSM and MOPSO-MODM. Energy 2024, 299, 131406 | |
| dc.relation.references | Rasekh, S.; Aliabadi, S.K.; Hansen, M.O.L. Toward Improving the Performance of a Variable Pitch Vertical Axis Wind Turbine (VP-VAWT), Part 1: Sensitivity Analysis Using Taguchi-CFD Approach. Ocean Eng. 2023, 279, 114478 | |
| dc.relation.references | Benharrats, F.; Mahi, H. Clear Sky Global Surface Solar Irradiance Estimation from Bird & Hulstrom Radiometric Model/MODIS Atmospheric Data Combination. J. Renew. Energ. 2023, 26, 31–39. | |
| dc.relation.references | Younis, A.; Elshiekh, H.; Osama, D.; Shaikh-Eldeen, G.; Elamir, A.; Yassin, Y.; Omer, A.; Biraima, E. Wind Speed Forecast for Sudan Using the Two-Parameter Weibull Distribution: The Case of Khartoum City. Wind 2023, 3, 213–231 | |
| dc.relation.references | Wang, X.; Ali, A.; Ke, H.; Huang, B.; Yang, J. Numerical Simulation of Aerodynamic Performance Degradation of Naca0012 Airfoils Under Icing Conditions for Vertical-Axis Wind Turbines. Case Stud. Therm. Eng. 2025, 72, 106433. | |
| dc.relation.references | Beigmoradi, S.; Vahdati, M. Multi-Objective Optimization of a Hatchback Rear End Utilizing Fractional Factorial Design Algorithm. Eng. Comput. 2021, 37, 139–153 | |
| dc.relation.references | Chan, W.; D’Ambrogio, A.; Zacharewicz, G.; Mustafee, N.; Wainer, G.; Page, E. A Tutorial on Design of Experiments for Simulation Modeling. IEEE Proc. Winter Simul. Conf. 2017, 1, 550–564. | |
| dc.relation.references | Foust, E.C. The Behavior of Vertical Axis Water Turbine with Flexible Blades: Self-Start, Ventilation, and Cavitation. ASME Open J. Eng. 2023, 2, 021041. [ | |
| dc.relation.references | Lisowski, F.; Augustyn, M. Analytical and Computational Fluid Dynamics Methods for Determining the Torque and Power of a Vertical-Axis Wind Turbine with a Carousel Rotor. Appl. Sci. 2025, 15, 208 | |
| dc.relation.references | Rezaeiha, A.; Montazeri, H.; Blocken, B. Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: Guidelines for azimuthal increment, domain size and convergence. Energy Conv. Manag. 2018, 156, 301–316 | |
| dc.relation.references | Rezaeiha, A.; Montazeri, H.; Blocken, B. Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters. Energy Conv. Manag. 2018, 168, 45–77. | |
| dc.relation.references | Ji, B.; Zhong, K.; Xiong, Q.; Qiu, P.; Zhang, X.; Wang, L. CFD Simulations of Aerodynamic Characteristics for the Three-Blade NREL Phase VI Wind Turbine Model. Energy 2022, 249, 123670. | |
| dc.relation.references | Hornshøj-Møller, S.D.; Nielsen, P.D.; Forooghi, P.; Abkar, M. Quantifying Structural Uncertainties in Reynolds-Averaged Navier–Stokes Simulations of Wind Turbine Wakes. Renew. Energy 2021, 164, 1550–1558. | |
| dc.relation.references | Michna, J.; Rogowski, K. A Refined Approach for Angle of Attack Estimation and Dynamic Force Hysteresis in H-Type Darrieus Wind Turbines. Energies 2024, 17, 6264 | |
| dc.relation.references | Fábregas, J.; Palencia, A.; Buitrago, C. Analyzing and Validating Energy Performance through Computational Simulation of a Helical Vertical Axis Wind Turbine. J. Adv. Res. Fluid Mech. Therm. Sci. 2024, 119, 103–113 | |
| dc.relation.references | Alvarez, J.; Fábregas, J.; Márquez, M.; Carpintero, J. Energy Evaluation of Synthesis Gas in a Turbocharger System Employing CFD Tools. CFD Lett. 2024, 16, 109–119 | |
| dc.relation.references | Bang, C.S.; Rana, Z.A.; Prince, S.A. CFD Analysis on Novel Vertical Axis Wind Turbine (VAWT). Machines 2024, 12, 800. | |
| dc.relation.references | Ayaz Atalan, Y.; Atalan, A. Testing the Wind Energy Data Based on Environmental Factors Predicted by Machine Learning with Analysis of Variance. Appl. Sci. 2025, 15, 241. | |
| dc.relation.references | Mohan Kumar, P.; Sivalingam, K.; Lim, T.-C.; Ramakrishna, S.; Wei, H. Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Large Wind Turbines. Clean Technol. 2019, 1, 205–223. | |
| dc.relation.references | Mohan Kumar, P.; Sivalingam, K.; Lim, T.-C.; Ramakrishna, S.; Wei, H. Strategies for Enhancing the Low Wind Speed Performance of H-Darrieus Wind Turbine—Part 1. Clean Technol. 2019, 1, 185–204. | |
| dc.relation.references | El Maani, R.; Radi, B.; El Hami, A. Numerical Study and Optimization-Based Sensitivity Analysis of a Vertical-Axis Wind Turbine. Energies 2024, 17, 6300 | |
| dc.rights | Copyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/). | eng |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución 4.0 Internacional (CC BY 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::621 - Física aplicada | |
| dc.subject.lemb | Energía eólica | |
| dc.subject.lemb | Wind energy | |
| dc.subject.lemb | Energías renovables | |
| dc.subject.lemb | Renewable energy | |
| dc.subject.lemb | Ingeniería mecánica aplicada | |
| dc.subject.lemb | Applied mechanical engineering | |
| dc.subject.lemb | Dinámica de fluidos computacional (CFD) | |
| dc.subject.lemb | Computational fluid dynamics (CFD) | |
| dc.subject.lemb | Transición energética | |
| dc.subject.lemb | Energy transition | |
| dc.subject.lemb | Desarrollo tecnológico sostenible | |
| dc.subject.lemb | Sustainable technological development | |
| dc.subject.ocde | 2. Ingeniería y Tecnología | |
| dc.subject.ods | ODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos | |
| dc.subject.proposal | Computational fluid dynamics | eng |
| dc.subject.proposal | Design of experiments | |
| dc.subject.proposal | Island region | |
| dc.subject.proposal | Power coefficient | |
| dc.subject.proposal | Renewable energies | eng |
| dc.subject.proposal | Wind analysis | eng |
| dc.title | Clean energy transition in insular communities: wind resource evaluation and VAWT design using CFD and statistics | |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_18cf | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dcterms.audience | Comunidad Académica | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | fb965bc8-2143-4df3-94f8-caacf7620cac | |
| relation.isAuthorOfPublication | 2f1576b0-f57b-4da3-afb7-a724a33ca1b4 | |
| relation.isAuthorOfPublication.latestForDiscovery | fb965bc8-2143-4df3-94f8-caacf7620cac |