Publicación:
Clean energy transition in insular communities: wind resource evaluation and VAWT design using CFD and statistics

dc.contributor.authorFabregas, Jonathan
dc.contributor.authorPalacios-Pineda, Luis Manuel,
dc.contributor.authorPalencia Díaz, Argemiro
dc.contributor.authorAbuchar Curi, Alfredo Miguel
dc.contributor.researchgroupGrupo de Investigación Energías Alternativas y Fluidos (EOLITO)
dc.date.accessioned2025-10-31T20:30:50Z
dc.date.issued2025-10-30
dc.descriptionContiene ilustraciones, gráficos
dc.description.abstractVertical-AxisWind Turbines (VAWTs) are efficient solutions for renewable energy generation, especially in regions with variable wind conditions. This study presents an optimized design of a small-scale H-type VAWT through the integration of Design of Experiments (DOE) and Computational Fluid Dynamics (CFD), using a fractional factorial 2k−p approach to evaluate the influence of geometric and operational parameters on power output and power coefficient (Cp), which ranged from 0.15 to 0.35. The research began with a comprehensive assessment of renewable resources in Isla Fuerte, Colombia. Solar analysis revealed an average of 5.13 Peak Sun Hours (PSHs), supporting the existing 175 kWp photovoltaic system. Wind modeling, based on meteorological data andWeibull distribution, showed speeds between 2.79 m/s and 5.36 m/s, predominantly from northeast to northwest. Under these conditions, the NACA S1046 airfoil was selected for its aerodynamic suitability. The turbine achieved power outputs from 0.46 W to 37.59 W, with stabilization times analyzed to assess dynamic performance. This initiative promotes environmental sustainability by reducing reliance on Diesel Generators (DGs) and empowering local communities through participatory design and technical training. The DOE-CFD methodology offers a replicable model for energy transition in insular regions of developing countries, linking technical innovation with social development and education.eng
dc.description.researchareaEnergías alternativas
dc.description.tableofcontentsArticle Title 1. Introduction 2. Materials and Methods 3. Results and Discussion 4. Conclusions Referenceseng
dc.format.extent27 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.citationFábregas-Villegas, J.; Palacios-Pineda, L.M.; Abuchar-Curi, A.M.; Palencia-Díaz, A. Clean Energy Transition in Insular Communities: Wind Resource Evaluation and VAWT Design Using CFD and Statistics. Sustainability 2025, 17, 9663. https://doi.org/10.3390/su17219663
dc.identifier.doihttps://doi.org/10.3390/su17219663
dc.identifier.urihttps://hdl.handle.net/20.500.12585/14268
dc.identifier.urlhttps://www.mdpi.com/2071-1050/17/21/9663
dc.language.isoeng
dc.publisherSustainability
dc.relation.referencesLu, Y.; Khan, Z.A.; Alvarez-Alvarado, M.S.; Zhang, Y.; Huang, Z.; Imran, M. A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources. Sustainability 2020, 12, 5078.
dc.relation.referencesLu, Y.; Khan, Z.A.; Alvarez-Alvarado, M.S.; Zhang, Y.; Huang, Z.; Imran, M. A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources. Sustainability 2020, 12, 5078.
dc.relation.referencesFábregas, J.; Tovar, I.; Palencia, A. Electrification as a development and sustainability approach in rural areas using renewable energy sources. Global J. Environ. Sci. Manag. 2024, 10, 2115–2126
dc.relation.referencesFabregas, J.; Palencia, A. The significance of clean energy, education, and environmental management in fostering a sustainable future. Global J. Environ. Sci. Manag. 2025, 11, 1001–1018
dc.relation.referencesAbraham, A.M.; Anil Lal, S. Multi-Objective Optimization of an Axial Flow Turbine Design Using Surrogate Modeling and Genetic Algorithm. ASME Open J. Eng. 2022, 1, 011022.
dc.relation.referencesRhenals, M.; Robledo, A.; Fábregas, J.; Carpintero, J. Analysis of Fluid Pressure Drop through a Globe Valve Using Computational Fluid Dynamics and Statistical Techniques. J. Adv. Res. Fluid Mech. Therm. Sci. 2024, 115, 70–82.
dc.relation.referencesSakib, M.S.; Griffith, D.T. Parked and operating load analysis in the aerodynamic design of multi-megawatt-scale floating vertical-axis wind turbines. Wind Energy Sci. 2022, 7, 677–696.
dc.relation.referencesWang, W.Y.; Ferng, Y.M. Numerical model for noise reduction of small vertical-axis wind turbines. Wind Energy Sci. 2024, 9, 651–664.
dc.relation.referencesWi´sniewski, J.; Rogowski, K.; Gumowski, K.; Szumbarski, J. Wind tunnel comparison of four VAWT configurations to test load-limiting concept and CFD validation. Wind Energy Sci. 2021, 6, 287–294.
dc.relation.referencesZamre, P.; Lutz, T. Computational-fluid-dynamics analysis of a Darrieus vertical-axis wind turbine installation on the rooftop of buildings under turbulent-inflow conditions. Wind Energy Sci. 2022, 7, 1661–1677
dc.relation.referencesDay, H.; Ingham, D.; Ma, L.; Pourkashanian, M. Adjoint Based Optimisation for Efficient VAWT Blade Aerodynamics Using CFD. J. Wind. Eng. Ind. Aerodyn. 2021, 208, 104431.
dc.relation.referencesAttie, C.; ElCheikh, A.; Nader, J.; Elkhoury, M. Performance Enhancement of a Vertical Axis Wind Turbine Using a Slotted Deflective Flap at the Trailing Edge. Energy Convers. Manag. 2022, 273, 116388
dc.relation.referencesShen, Z.; Gong, S.; Zu, H.; Guo, W. Multi-Objective Optimization Study on the Performance of Double Darrieus Hybrid Vertical Axis Wind Turbine Based on DOE-RSM and MOPSO-MODM. Energy 2024, 299, 131406
dc.relation.referencesRasekh, S.; Aliabadi, S.K.; Hansen, M.O.L. Toward Improving the Performance of a Variable Pitch Vertical Axis Wind Turbine (VP-VAWT), Part 1: Sensitivity Analysis Using Taguchi-CFD Approach. Ocean Eng. 2023, 279, 114478
dc.relation.referencesBenharrats, F.; Mahi, H. Clear Sky Global Surface Solar Irradiance Estimation from Bird & Hulstrom Radiometric Model/MODIS Atmospheric Data Combination. J. Renew. Energ. 2023, 26, 31–39.
dc.relation.referencesYounis, A.; Elshiekh, H.; Osama, D.; Shaikh-Eldeen, G.; Elamir, A.; Yassin, Y.; Omer, A.; Biraima, E. Wind Speed Forecast for Sudan Using the Two-Parameter Weibull Distribution: The Case of Khartoum City. Wind 2023, 3, 213–231
dc.relation.referencesWang, X.; Ali, A.; Ke, H.; Huang, B.; Yang, J. Numerical Simulation of Aerodynamic Performance Degradation of Naca0012 Airfoils Under Icing Conditions for Vertical-Axis Wind Turbines. Case Stud. Therm. Eng. 2025, 72, 106433.
dc.relation.referencesBeigmoradi, S.; Vahdati, M. Multi-Objective Optimization of a Hatchback Rear End Utilizing Fractional Factorial Design Algorithm. Eng. Comput. 2021, 37, 139–153
dc.relation.referencesChan, W.; D’Ambrogio, A.; Zacharewicz, G.; Mustafee, N.; Wainer, G.; Page, E. A Tutorial on Design of Experiments for Simulation Modeling. IEEE Proc. Winter Simul. Conf. 2017, 1, 550–564.
dc.relation.referencesFoust, E.C. The Behavior of Vertical Axis Water Turbine with Flexible Blades: Self-Start, Ventilation, and Cavitation. ASME Open J. Eng. 2023, 2, 021041. [
dc.relation.referencesLisowski, F.; Augustyn, M. Analytical and Computational Fluid Dynamics Methods for Determining the Torque and Power of a Vertical-Axis Wind Turbine with a Carousel Rotor. Appl. Sci. 2025, 15, 208
dc.relation.referencesRezaeiha, A.; Montazeri, H.; Blocken, B. Towards accurate CFD simulations of vertical axis wind turbines at different tip speed ratios and solidities: Guidelines for azimuthal increment, domain size and convergence. Energy Conv. Manag. 2018, 156, 301–316
dc.relation.referencesRezaeiha, A.; Montazeri, H.; Blocken, B. Characterization of aerodynamic performance of vertical axis wind turbines: Impact of operational parameters. Energy Conv. Manag. 2018, 168, 45–77.
dc.relation.referencesJi, B.; Zhong, K.; Xiong, Q.; Qiu, P.; Zhang, X.; Wang, L. CFD Simulations of Aerodynamic Characteristics for the Three-Blade NREL Phase VI Wind Turbine Model. Energy 2022, 249, 123670.
dc.relation.referencesHornshøj-Møller, S.D.; Nielsen, P.D.; Forooghi, P.; Abkar, M. Quantifying Structural Uncertainties in Reynolds-Averaged Navier–Stokes Simulations of Wind Turbine Wakes. Renew. Energy 2021, 164, 1550–1558.
dc.relation.referencesMichna, J.; Rogowski, K. A Refined Approach for Angle of Attack Estimation and Dynamic Force Hysteresis in H-Type Darrieus Wind Turbines. Energies 2024, 17, 6264
dc.relation.referencesFábregas, J.; Palencia, A.; Buitrago, C. Analyzing and Validating Energy Performance through Computational Simulation of a Helical Vertical Axis Wind Turbine. J. Adv. Res. Fluid Mech. Therm. Sci. 2024, 119, 103–113
dc.relation.referencesAlvarez, J.; Fábregas, J.; Márquez, M.; Carpintero, J. Energy Evaluation of Synthesis Gas in a Turbocharger System Employing CFD Tools. CFD Lett. 2024, 16, 109–119
dc.relation.referencesBang, C.S.; Rana, Z.A.; Prince, S.A. CFD Analysis on Novel Vertical Axis Wind Turbine (VAWT). Machines 2024, 12, 800.
dc.relation.referencesAyaz Atalan, Y.; Atalan, A. Testing the Wind Energy Data Based on Environmental Factors Predicted by Machine Learning with Analysis of Variance. Appl. Sci. 2025, 15, 241.
dc.relation.referencesMohan Kumar, P.; Sivalingam, K.; Lim, T.-C.; Ramakrishna, S.; Wei, H. Review on the Evolution of Darrieus Vertical Axis Wind Turbine: Large Wind Turbines. Clean Technol. 2019, 1, 205–223.
dc.relation.referencesMohan Kumar, P.; Sivalingam, K.; Lim, T.-C.; Ramakrishna, S.; Wei, H. Strategies for Enhancing the Low Wind Speed Performance of H-Darrieus Wind Turbine—Part 1. Clean Technol. 2019, 1, 185–204.
dc.relation.referencesEl Maani, R.; Radi, B.; El Hami, A. Numerical Study and Optimization-Based Sensitivity Analysis of a Vertical-Axis Wind Turbine. Energies 2024, 17, 6300
dc.rightsCopyright: © 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/).eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución 4.0 Internacional (CC BY 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.subject.lembEnergía eólica
dc.subject.lembWind energy
dc.subject.lembEnergías renovables
dc.subject.lembRenewable energy
dc.subject.lembIngeniería mecánica aplicada
dc.subject.lembApplied mechanical engineering
dc.subject.lembDinámica de fluidos computacional (CFD)
dc.subject.lembComputational fluid dynamics (CFD)
dc.subject.lembTransición energética
dc.subject.lembEnergy transition
dc.subject.lembDesarrollo tecnológico sostenible
dc.subject.lembSustainable technological development
dc.subject.ocde2. Ingeniería y Tecnología
dc.subject.odsODS 7: Energía asequible y no contaminante. Garantizar el acceso a una energía asequible, fiable, sostenible y moderna para todos
dc.subject.proposalComputational fluid dynamicseng
dc.subject.proposalDesign of experiments
dc.subject.proposalIsland region
dc.subject.proposalPower coefficient
dc.subject.proposalRenewable energieseng
dc.subject.proposalWind analysiseng
dc.titleClean energy transition in insular communities: wind resource evaluation and VAWT design using CFD and statistics
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_18cf
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dcterms.audienceComunidad Académica
dspace.entity.typePublication
relation.isAuthorOfPublicationfb965bc8-2143-4df3-94f8-caacf7620cac
relation.isAuthorOfPublication2f1576b0-f57b-4da3-afb7-a724a33ca1b4
relation.isAuthorOfPublication.latestForDiscoveryfb965bc8-2143-4df3-94f8-caacf7620cac

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
sustainability-17-09663.pdf
Tamaño:
7.37 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: