Publicación:
Emerging and traditional pollutants in water resources: A perspective on the American Continent

dc.contributor.authorDe la Parra-Guerra, Ana C.
dc.contributor.authorAcevedo Barrios, Rosa Leonor
dc.contributor.authorCarvajal-Ruiz, Angie
dc.contributor.authorMONROY-LICHT, ANDREA
dc.contributor.authorRetamoza-Chamorro, Katy
dc.contributor.researchgroupGrupo de Investigación Estudios Químicos y Biológicos
dc.contributor.seedbedsSemillero de Investigación en Ciencias Ambientales
dc.coverage.temporalInternacionacional y Nacional
dc.date.accessioned2025-11-27T19:18:10Z
dc.date.issued2025-11-19
dc.descriptionContiene ilustraciones
dc.description.abstractThe increasing presence of emerging contaminants (ECs) is directly associated with the widespread use of personal care products, pharmaceuticals, illicit drugs, microplastics, and other organic and inorganic compounds driven by modern consumer culture. These substances, often unregulated, continuously enter the environment through sewage, domestic and industrial effluents, and inefficient wastewater treatment, leading to endocrine disruption and reproductive issues in wildlife, as well as broader ecological and human health risks. In contrast to traditional pollutants (TPs) such as heavy metals, which are better studied, and partially regulated ECs remain a growing concern due to their persistence and unknown long-term effects. Even though efforts have been made to standardize some heavy metals, their toxicity still poses challenges to water quality and public health. Therefore, continuous monitoring of both ECs and TPs is crucial to track contamination sources, assess environmental and health impacts, and support the development of remediation technologies and environmental policies. This review aimed to compile and analyze scientific literature on the incidence and effects of ECs and TPs in water resources, focusing on their most common types, environmental pathways, and biological models used for toxicity testing. The bibliometric analysis encompassed 200 research articles from the Americas, highlighting the most studied contaminants, methodological trends, and data essential for modeling pollution dynamics and guiding evidence-based decisions. The findings provide a foundational framework for improving water resource management and underscore the urgent need to integrate ECs into regulatory and monitoring programs to ensure aquatic ecosystem sustainability.
dc.description.researchareaMicrobiología y toxicología ambiental
dc.description.tableofcontents1. INTRODUCTION 2. METHODOLOGY 3. RESULTS AND DISCUSSION 4. CONCLUSION 5. REFERENCES
dc.description.technicalinfoNo Aplica
dc.format.extent28 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.citationAna C De la Parra-Guerra, Rosa Acevedo-Barrios, Angie Carvajal-Ruiz, Andrea Monroy-Licht, Katy Retamoza-Chamorro, Emerging and traditional contaminants in water resources: a review from the perspective of the American continent, Environmental Toxicology and Chemistry, 2025;, vgaf279, https://doi.org/10.1093/etojnl/vgaf279
dc.identifier.otherDOI: 10.1093/etojnl/vgaf279
dc.identifier.urihttps://hdl.handle.net/20.500.12585/14277
dc.language.isoeng
dc.publisherEnvironmental Toxicology and Chemistry
dc.relation.referencesAbreu, F. E. L., Batista, R. M., Castro, Í. B., & Fillmann, G. (2021). Legacy and emerging antifouling biocide residues in a tropical estuarine system (Espirito Santo state, SE, Brazil). Marine Pollution Bulletin, 166, 112255. https://doi.org/10.1016/j.marpolbul.2021.112255
dc.relation.referencesAcevedo Barrios, R. L., Hernández Rocha, I., Puentes Martinez, D., Rubiano-Labrador, C., Pasqualino, J., Chavarro-Mesa, E., & De la parra-Guerra, A. C. (2023). Psychrobacter sp: Perchlorate reducing bacteria, isolated from marine sediments from Margarita Bay, Antarctica. https://laccei.org/LACCEI2023-BuenosAires/meta/FP995.html
dc.relation.referencesAcevedo-Barrios, R., Bertel-Sevilla, A., Alonso-Molina, J., & Olivero-Verbel, J. (2019). Perchlorate-Reducing Bacteria from Hypersaline Soils of the Colombian Caribbean. International Journal of Microbiology, 2019, 1-13. https://doi.org/10.1155/2019/6981865
dc.relation.referencesAcevedo-Barrios, R., & Olivero-Verbel, J. (2021). Perchlorate Contamination: Sources, Effects, and Technologies for Remediation. En P. de Voogt (Ed.), Reviews of Environmental Contamination and Toxicology Volume 256 (pp. 103-120). Springer International Publishing. https://doi.org/10.1007/398_2021_66
dc.relation.referencesAcevedo-Barrios, R., Rubiano-Labrador, C., & Miranda-Castro, W. (2022). Presence of perchlorate in marine sediments from Antarctica during 2017–2020. Environmental Monitoring and Assessment, 194(2), 102. https://doi.org/10.1007/s10661-022-09765-4
dc.relation.referencesAcevedo-Barrios, R., Rubiano-Labrador, C., Navarro-Narvaez, D., Escobar-Galarza, J., González, D., Mira, S., Moreno, D., Contreras, A., & Miranda-Castro, W. (2022). Perchlorate-reducing bacteria from Antarctic marine sediments. Environmental Monitoring and Assessment, 194(9), 654. https://doi.org/10.1007/s10661-022-10328-w
dc.relation.referencesAcevedo-Barrios, R., Sabater-Marco, C., & Olivero-Verbel, J. (2018). Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environmental Science and Pollution Research, 25(14), 13697-13708. https://doi.org/10.1007/s11356-018-1565-6
dc.relation.referencesAcevedo-Barrios, R., Sabater-Marco, C., & Olivero-Verbel, J. (2019). Perchlorate toxicity in organisms from different trophic levels. September 2-3. https://doi.org/10.1016/j.toxlet.2019.09.002
dc.relation.referencesAcevedo-Barrios, R., Tirado-Ballestas, I., Bertel-Sevilla, A., Cervantes-Ceballos, L., Gallego, J. L., Leal, M. A., Tovar, D., & Olivero-Verbel, J. (2024). Bioprospecting of extremophilic perchlorate-reducing bacteria: Report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia. Biodegradation. https://doi.org/10.1007/s10532-024-10079-0
dc.relation.referencesAcosta-Coley, I., Duran-Izquierdo, M., Rodriguez-Cavallo, E., Mercado-Camargo, J., Mendez-Cuadro, D., & Olivero-Verbel, J. (2019b). Quantification of microplastics along the Caribbean Coastline of Colombia: Pollution profile and biological effects on Caenorhabditis elegans. Marine Pollution Bulletin, 146, 574-583. https://doi.org/10.1016/j.marpolbul.2019.06.084
dc.relation.referencescosta-Coley, I., Mendez-Cuadro, D., Rodriguez-Cavallo, E., de la Rosa, J., & Olivero-Verbel, J. (2019a). Trace elements in microplastics in Cartagena: A hotspot for plastic pollution at the Caribbean. Marine Pollution Bulletin, 139, 402-411. https://doi.org/10.1016/j.marpolbul.2018.12.016
dc.relation.referencesAcosta-Coley, I., & Olivero-Verbel, J. (2015). Microplastic resin pellets on an urban tropical beach in Colombia. Environmental Monitoring and Assessment, 187(7), 435. https://doi.org/10.1007/s10661-015-4602-7
dc.relation.referencesAli, H., & Khan, E. (2018). What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. Toxicological & Environmental Chemistry, 100(1), 6-19. https://doi.org/10.1080/02772248.2017.1413652
dc.relation.referencesAlcala-Orozco, M., Caballero-Gallardo, K., & Olivero-Verbel, J. (2020). Biomonitoring of Mercury, Cadmium and Selenium in Fish and the Population of Puerto Nariño, at the Southern Corner of the Colombian Amazon. Archives of Environmental Contamination and Toxicology, 79(3), 354-370. https://doi.org/10.1007/s00244-020-00761-8
dc.relation.referencesAlloway, B. J. (2013). Sources of Heavy Metals and Metalloids in Soils. En B. J. Alloway (Ed.), Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability (pp. 11-50). Springer Netherlands. https://doi.org/10.1007/978-94-007-4470-7_2
dc.relation.referencesAlonso, Á., Figueroa, R., & Castro-Díez, P. (2017). Pollution Assessment of the Biobío River (Chile): Prioritization of Substances of Concern Under an Ecotoxicological Approach. Environmental Management, 59(5), 856-869. https://doi.org/10.1007/s00267-017-0824-5
dc.relation.referencesAmara, I. E. A., Elshenawy, O. H., Abdelrady, M., & El-Kadi, A. O. S. (2014). Acute mercury toxicity modulates cytochrome P450, soluble epoxide hydrolase and their associated arachidonic acid metabolites in C57Bl/6 mouse heart. Toxicology Letters, 226(1), 53-62. https://doi.org/10.1016/j.toxlet.2014.01.025
dc.relation.referencesAmir, W., Farid, M., Ishaq, H. K., Farid, S., Zubair, M., Alharby, H. F., Bamagoos, A. A., Rizwan, M., Raza, N., Hakeem, K. R., & Ali, S. (2020). Accumulation potential and tolerance response of Typha latifolia L. under citric acid-assisted phytoextraction of lead and mercury. Chemosphere, 257, 127247. https://doi.org/10.1016/j.chemosphere.2020.127247
dc.relation.referencesAndresen, J. A., Muir, D., Ueno, D., Darling, C., Theobald, N., & Bester, K. (2007). Emerging pollutants in the North Sea in comparison to Lake Ontario, Canada, data. Environmental Toxicology and Chemistry, 26(6), 1081-1089. https://doi.org/10.1897/06-416R.1
dc.relation.referencesArsand, J. B., Hoff, R. B., Jank, L., Meirelles, L. N., Silvia Díaz-Cruz, M., Pizzolato, T. M., & Barceló, D. (2018). Transformation products of amoxicillin and ampicillin after photolysis in aqueous matrices: Identification and kinetics. Science of The Total Environment, 642, 954-967. https://doi.org/10.1016/j.scitotenv.2018.06.122
dc.relation.referencesArtisanal Gold Council. (2014). Mercury Watch: Charting the improvement of artisanal small-scale gold mining. 24 Noviembre 2014.[En línea]. Available: http://www. mercurywatch. org.
dc.relation.referencesAsati, A., Pichhode, M., Nikhil, K. (2016). Effect of heavy metals on plants: an overview. International Journal of Application or Innovation in Engineering & Management, 5(3), 56-66.
dc.relation.referencesBarakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361-377. https://doi.org/10.1016/j.arabjc.2010.07.019
dc.relation.referencesedoya-Ríos, D. F., Lara-Borrero, J. A., Duque-Pardo, V., Madera-Parra, C. A., Jimenez, E. M., & Toro, A. F. (2018). Study of the occurrence and ecosystem danger of selected endocrine disruptors in the urban water cycle of the city of Bogotá, Colombia. Journal of Environmental Science and Health, Part A, 53(4), 317-325. https://doi.org/10.1080/10934529.2017.1401372
dc.relation.referencesBorrelle, S. B., Ringma, J., Law, K. L., Monnahan, C. C., Lebreton, L., McGivern, A., Murphy, E., Jambeck, J., Leonard, G. H., Hilleary, M. A., Eriksen, M., Possingham, H. P., De Frond, H., Gerber, L. R., Polidoro, B., Tahir, A., Bernard, M., Mallos, N., Barnes, M., & Rochman, C. M. (2020). Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369(6510), 1515-1518. https://doi.org/10.1126/science.aba3656
dc.relation.referencesBrowne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environmental Science & Technology, 45(21), 9175-9179. https://doi.org/10.1021/es201811s
dc.relation.referencesBruins, M. R., Kapil, S., & Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and environmental safety, 45(3), 198-207 https://doi.org/10.1006/eesa.1999.1860.
dc.relation.referencesCampestrini, I., & Jardim, W. F. (2017). Occurrence of cocaine and benzoylecgonine in drinking and source water in the São Paulo State region, Brazil. Science of The Total Environment, 576, 374-380. https://doi.org/10.1016/j.scitotenv.2016.10.089
dc.relation.referencesCao, F., Jaunat, J., Sturchio, N., Cancès, B., Morvan, X., Devos, A., Barbin, V., & Ollivier, P. (2019). Worldwide occurrence and origin of perchlorate ion in waters: A review. Science of The Total Environment, 661, 737-749. https://doi.org/10.1016/j.scitotenv.2019.01.107
dc.relation.referencesCarneiro, M. F. H., Oliveira Souza, J. M., Grotto, D., Batista, B. L., de Oliveira Souza, V. C., & Barbosa, F. (2014). A systematic study of the disposition and metabolism of mercury species in mice after exposure to low levels of thimerosal (ethylmercury). Environmental Research, 134, 218-227. https://doi.org/10.1016/j.envres.2014.07.009
dc.relation.referencesCarrasco, J. del C. R., Delgado, C. Y. S., & Cobos, D. F. O. (2017). Contaminantes emergentes y su impacto en la salud. Emerging contaminants and its impact on the health. Revista de la Facultad de Ciencias Médicas de la Universidad de Cuenca, 35(2), Article 2.
dc.relation.referencesCelis-Hernández, O., Ávila, E., Ward, R. D., Rodríguez-Santiago, M. A., & Aguirre-Téllez, J. A. (2021). Microplastic distribution in urban vs pristine mangroves: Using marine sponges as bioindicators of environmental pollution. Environmental Pollution, 284, 117391. https://doi.org/10.1016/j.envpol.2021.117391
dc.relation.referencesChaves, M. de J. S., Barbosa, S. C., Malinowski, M. de M., Volpato, D., Castro, Í. B., Franco, T. C. R. dos S., & Primel, E. G. (2020). Pharmaceuticals and personal care products in a Brazilian wetland of international importance: Occurrence and environmental risk assessment. Science of The Total Environment, 734, 139374. https://doi.org/10.1016/j.scitotenv.2020.139374
dc.relation.referencesCorrea, L., Rea, L. D., Bentzen, R., & O’Hara, T. M. (2014). Assessment of mercury and selenium tissular concentrations and total mercury body burden in 6 Steller sea lion pups from the Aleutian Islands. Marine Pollution Bulletin, 82(1), 175-182. https://doi.org/10.1016/j.marpolbul.2014.02.022
dc.relation.referencesCristale, J., Oliveira Santos, I., Umbuzeiro, G. de A., & Fagnani, E. (2021). Occurrence and risk assessment of organophosphate esters in urban rivers from Piracicaba watershed (Brazil). Environmental Science and Pollution Research, 28(42), 59244-59255. https://doi.org/10.1007/s11356-020-10150-2
dc.relation.referencesruz-López, A., Dávila-Pórcel, R. A., de León-Gómez, H., Rodríguez-Martínez, J. M., Suárez-Vázquez, S. I., Cardona-Benavides, A., Castro-Larragoitia, G. J., Boreselli, L., de Lourdes Villalba, M., Pinales-Munguía, A., Silva-Hidalgo, H., de la Garza, R., & del Socorro Espino-Valdes, M. (2020). Exploratory study on the presence of bisphenol A and bis(2-ethylhexyl) phthalate in the Santa Catarina River in Monterrey, N.L., Mexico. Environmental Monitoring and Assessment, 192(8), 488. https://doi.org/10.1007/s10661-020-08446-4
dc.relation.referencesda Costa Araújo, A. P., de Melo, N. F. S., de Oliveira Junior, A. G., Rodrigues, F. P., Fernandes, T., de Andrade Vieira, J. E., Rocha, T. L., & Malafaia, G. (2020). How much are microplastics harmful to the health of amphibians? A study with pristine polyethylene microplastics and Physalaemus cuvieri. Journal of Hazardous Materials, 382, 121066. https://doi.org/10.1016/j.jhazmat.2019.121066
dc.relation.referencesde Aquino, S. F., Brandt, E. M. F., Bottrel, S. E. C., Gomes, F. B. R., & Silva, S. de Q. (2021). Occurrence of Pharmaceuticals and Endocrine Disrupting Compounds in Brazilian Water and the Risks They May Represent to Human Health. International Journal of Environmental Research and Public Health, 18(22), 11765. https://doi.org/10.3390/ijerph182211765
dc.relation.referencesDe la Parra-Guerra, A. C., & Acevedo-Barrios, R. (2023). Studies of Endocrine Disruptors: Nonylphenol and Isomers in Biological Models. Environmental Toxicology and Chemistry, 42(7), 1439-1450. https://doi.org/10.1002/etc.5633
dc.relation.referencesDe la Parra-Guerra, A., & Olivero-Verbel, J. (2020). Toxicity of nonylphenol and nonylphenol ethoxylate on Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 187, 109709. https://doi.org/10.1016/j.ecoenv.2019.109709
dc.relation.referencesDe la Parra-Guerra, A., Stürzenbaum, S., & Olivero-Verbel, J. (2020). Intergenerational toxicity of nonylphenol ethoxylate (NP-9) in Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 197, 110588. https://doi.org/10.1016/j.ecoenv.2020.110588
dc.relation.referencesDey, M., Akter, A., Islam, S., Dey, S. C., Choudhury, T. R., Fatema, K. J., & Begum, B. A. (2021). Assessment of contamination level, pollution risk and source apportionment of heavy metals in the Halda River water, Bangladesh. Heliyon, 7(12). https://doi.org/10.1016/j.heliyon.2021.e08625
dc.relation.referencesdo Amaral, D. F., Montalvão, M. F., de Oliveira Mendes, B., da Costa Araújo, A. P., de Lima Rodrigues, A. S., & Malafaia, G. (2019). Sub-lethal effects induced by a mixture of different pharmaceutical drugs in predicted environmentally relevant concentrations on Lithobates catesbeianus (Shaw, 1802) (Anura, ranidae) tadpoles. Environmental Science and Pollution Research, 26(1), 600-616. https://doi.org/10.1007/s11356-018-3656-9
dc.relation.referencesdos Santos, D. M., Buruaem, L., Gonçalves, R. M., Williams, M., Abessa, D. M. S., Kookana, R., & de Marchi, M. R. R. (2018). Multiresidue determination and predicted risk assessment of contaminants of emerging concern in marine sediments from the vicinities of submarine sewage outfalls. Marine Pollution Bulletin, 129(1), 299-307. https://doi.org/10.1016/j.marpolbul.2018.02.048
dc.relation.referencesDu, Z., Xiao, C., Furdui, V. I., & Zhang, W. (2019). The perchlorate record during 1956–2004 from Tienshan ice core, East Asia. Science of The Total Environment, 656, 1121-1132. https://doi.org/10.1016/j.scitotenv.2018.11.456
dc.relation.referencesEgbuna, C., Amadi, C. N., Patrick-Iwuanyanwu, K. C., Ezzat, S. M., Awuchi, C. G., Ugonwa, P. O., & Orisakwe, O. E. (2021). Emerging pollutants in Nigeria: A systematic review. Environmental Toxicology and Pharmacology, 85, 103638. https://doi.org/10.1016/j.etap.2021.103638
dc.relation.referencesElliott, S. M., Brigham, M. E., Lee, K. E., Banda, J. A., Choy, S. J., Gefell, D. J., & Jorgenson, Z. G. (2017). Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence. PloS one, 12(9), e0182868. https://doi.org/10.1371/journal.pone.0182868
dc.relation.referencesnyoh, C. E., Verla, A. W., Qingyue, W., Ohiagu, F. O., Chowdhury, A. H., Enyoh, E. C., Chowdhury, T., Verla, E. N., & Chinwendu, U. P. (2020). An overview of emerging pollutants in air: Method of analysis and potential public health concern from human environmental exposure. Trends in Environmental Analytical Chemistry, 28, e00107. https://doi.org/10.1016/j.teac.2020.e00107
dc.relation.referencesEriksen, M., Lebreton, L. C. M., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani, F., Ryan, P. G., & Reisser, J. (2014). Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLOS ONE, 9(12), e111913. https://doi.org/10.1371/journal.pone.0111913
dc.relation.referencesFranceschini, M. D., Evers, D. C., Kenow, K. P., Meyer, M. W., Pokras, M., & Romero, L. M. (2017). Mercury correlates with altered corticosterone but not testosterone or estradiol concentrations in common loons. Ecotoxicology and Environmental Safety, 142, 348-354. https://doi.org/10.1016/j.ecoenv.2017.04.030
dc.relation.referencesFrias, J. P. G. L., Sobral, P., & Ferreira, A. M. (2010). Organic pollutants in microplastics from two beaches of the Portuguese coast. Marine Pollution Bulletin, 60(11), 1988-1992. https://doi.org/10.1016/j.marpolbul.2010.07.030
dc.relation.referencesGani, K. M., Hlongwa, N., Abunama, T., Kumari, S., & Bux, F. (2021). Emerging contaminants in South African water environment- a critical review of their occurrence, sources and ecotoxicological risks. Chemosphere, 269, 128737. https://doi.org/10.1016/j.chemosphere.2020.128737
dc.relation.referencesGarcés-Ordóñez, O., Saldarriaga-Vélez, J. F., Espinosa-Díaz, L. F., Patiño, A. D., Cusba, J., Canals, M., Mejía-Esquivia, K., Fragozo-Velásquez, L., Sáenz-Arias, S., Córdoba-Meza, T., & Thiel, M. (2022). Microplastic pollution in water, sediments and commercial fish species from Ciénaga Grande de Santa Marta lagoon complex, Colombian Caribbean. Science of The Total Environment, 829, 154643. https://doi.org/10.1016/j.scitotenv.2022.154643
dc.relation.referencesGhuge, S. A., Nikalje, G. C., Kadam, U. S., Suprasanna, P., & Hong, J. C. (2023). Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. Journal of Hazardous Materials, 450, 131039. https://doi.org/10.1016/j.jhazmat.2023.131039
dc.relation.referencesGil, M. J., Soto, A. M., Usma, J. I., & Gutiérrez, O. D. (2012). Contaminantes emergentes en aguas, efectos y posibles tratamientos. Producción + Limpia, 7(2), 52-73.
dc.relation.referencesGogoi, A., Mazumder, P., Tyagi, V. K., Tushara Chaminda, G. G., An, A. K., & Kumar, M. (2018). Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable Development, 6, 169-180. https://doi.org/10.1016/j.gsd.2017.12.009
dc.relation.referencesGonzález-Mariño, I., Quintana, J. B., Rodríguez, I., González-Díez, M., & Cela, R. (2012). Screening and Selective Quantification of Illicit Drugs in Wastewater by Mixed-Mode Solid-Phase Extraction and Quadrupole-Time-of-Flight Liquid Chromatography–Mass Spectrometry. Analytical Chemistry, 84(3), 1708-1717. https://doi.org/10.1021/ac202989e
dc.relation.referencesGottschalk, F., Sun, T., & Nowack, B. (2013). Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environmental Pollution, 181, 287-300. https://doi.org/10.1016/j.envpol.2013.06.003
dc.relation.referencesGraves, S. D., Kidd, K. A., Batchelar, K. L., Cowie, A. M., O’Driscoll, N. J., & Martyniuk, C. J. (2017). Response of oxidative stress transcripts in the brain of wild yellow perch (Perca flavescens) exposed to an environmental gradient of methylmercury. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 192, 50-58. https://doi.org/10.1016/j.cbpc.2016.12.005
dc.relation.referencesHernández-Guzmán, F. A., Macías-Zamora, J. V., Ramírez-Álvarez, N., Alvarez-Aguilar, A., Quezada-Hernández, C., & Fonseca, A. P. (2017). Treated wastewater effluent as a source of pyrethroids and fipronil at Todos Santos Bay, Mexico: Its impact on sediments and organisms. Environmental Toxicology and Chemistry, 36(11), 3057-3064. https://doi.org/10.1002/etc.3875
dc.relation.referencesHuang, S. S.-Y., Hung, S. S. O., & Chan, H. M. (2014). Maintaining tissue selenium species distribution as a potential defense mechanism against methylmercury toxicity in juvenile white sturgeon (Acipenser transmontanus). Aquatic Toxicology, 156, 88-95. https://doi.org/10.1016/j.aquatox.2014.08.004
dc.relation.referencesHuyck, R. W., Nagarkar, M., Olsen, N., Clamons, S. E., & Saha, M. S. (2015). Methylmercury exposure during early Xenopus laevis development affects cell proliferation and death but not neural progenitor specification. Neurotoxicology and Teratology, 47, 102-113. https://doi.org/10.1016/j.ntt.2014.11.010
dc.relation.referencesIde, A. H., Osawa, R. A., Marcante, L. O., da Costa Pereira, J., & de Azevedo, J. C. R. (2017). Occurrence of Pharmaceutical Products, Female Sex Hormones and Caffeine in a Subtropical Region in Brazil. CLEAN – Soil, Air, Water, 45(9), 1700334. https://doi.org/10.1002/clen.201700334
dc.relation.referencesJackson, W. A., Böhlke, J. K., Andraski, B. J., Fahlquist, L., Bexfield, L., Eckardt, F. D., Gates, J. B., Davila, A. F., McKay, C. P., Rao, B., Sevanthi, R., Rajagopalan, S., Estrada, N., Sturchio, N., Hatzinger, P. B., Anderson, T. A., Orris, G., Betancourt, J., Stonestrom, D., … Harvey, G. J. (2015). Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments. Geochimica et Cosmochimica Acta, 164, 502-522. https://doi.org/10.1016/j.gca.2015.05.016
dc.relation.referencesJaimes Urbina, J. A., & Vera Solano, J. A. (2020). Los contaminantes emergentes de las aguas residuales de la industria farmacéutica y su tratamiento por medio de la ozonización. Informador técnico, 84(2 (Julio-Diciembre)), 249-263.
dc.relation.referencesJaiswal, A., Verma, A., & Jaiswal, P. (2018). Detrimental Effects of Heavy Metals in Soil, Plants, and Aquatic Ecosystems and in Humans. Journal of Environmental Pathology, Toxicology and Oncology, 37(3). https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018025348
dc.relation.referencesJeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9(1), 1050-1074. https://doi.org/10.3762/bjnano.9.98
dc.relation.referencesJones-Lepp, T. L., Sanchez, C., Alvarez, D. A., Wilson, D. C., & Taniguchi-Fu, R. L. (2012). Point sources of emerging contaminants along the Colorado River Basin: Source water for the arid Southwestern United States. Science of the Total Environment, 430, 237-245. https://doi.org/10.1016/j.scitotenv.2012.04.053
dc.relation.referencesKar, P., Shukla, K., Jain, P., Sathiyan, G., & Gupta, R. K. (2021). Semiconductor based photocatalysts for detoxification of emerging pharmaceutical pollutants from aquatic systems: A critical review. Nano Materials Science, 3(1), 25-46. https://doi.org/10.1016/j.nanoms.2020.11.001
dc.relation.referencesKataki, S., Chatterjee, S., Vairale, M. G., Dwivedi, S. K., & Gupta, D. K. (2021). Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). Journal of Environmental Management, 283, 111986. https://doi.org/10.1016/j.jenvman.2021.111986
dc.relation.referencesKayastha, P., Rzymski, P., Gołdyn, B., Nagwani, A. K., Fiałkowska, E., Pajdak-Stós, A., Sobkowiak, R., Robotnikowski, G., & Kaczmarek, Ł. (2024). Tolerance against exposure to solution of magnesium perchlorate in microinvertebrates. Zoological Journal of the Linnean Society, 200(1), 239-257. https://doi.org/10.1093/zoolinnean/zlad060
dc.relation.referencesKhan, I., Ghani, A., Abd-Ur-Rehman, Awan, S. A., Noreen, A., & Khalid, I. (2016). Comparative Analysis of Heavy Metal Profile of Brassica campestris (L.) and Raphanus sativus (L.) Irrigated with Municipal Waste Water of Sargodha City. जर्नल ऑफ़ क्लिनिकल टॉक्सिकोलॉजी, 0(0). https://hindi.longdom.org/abstract/comparative-analysis-of-heavy-metal-profile-of-brassica-campestris-l-andraphanus-sativus-l-irrigated-with-municipal-wast-50960.html
dc.relation.referencesKhan, S. H., & Pathak, B. (2020). Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review. Environmental Nanotechnology, Monitoring & Management, 13, 100290. https://doi.org/10.1016/j.enmm.2020.100290
dc.relation.referencesKhan, S., Naushad, Mu., Govarthanan, M., Iqbal, J., & Alfadul, S. M. (2022). Emerging contaminants of high concern for the environment: Current trends and future research. Environmental Research, 207, 112609. https://doi.org/10.1016/j.envres.2021.112609
dc.relation.referencesKim, Y.-I., Jeong, E., Lee, J.-Y., Chia, R. W., & Raza, M. (2023). Microplastic contamination in groundwater on a volcanic Jeju Island of Korea. Environmental Research, 226, 115682. https://doi.org/10.1016/j.envres.2023.115682
dc.relation.referencesKlink, A. (2017). A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: Implication for phytoremediation. Environmental Science and Pollution Research, 24(4), 3843-3852. https://doi.org/10.1007/s11356-016-8135-6
dc.relation.referencesKrey, A., Ostertag, S. K., & Chan, H. M. (2015). Assessment of neurotoxic effects of mercury in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) from the Canadian Arctic. Science of The Total Environment, 509-510, 237-247. https://doi.org/10.1016/j.scitotenv.2014.05.134
dc.relation.referencesKumar, A., Patra, C., Rajendran, H. K., & Narayanasamy, S. (2022). Activated carbon-chitosan based adsorbent for the efficient removal of the emerging contaminant diclofenac: Synthesis, characterization and phytotoxicity studies. Chemosphere, 307, 135806. https://doi.org/10.1016/j.chemosphere.2022.135806
dc.relation.referencesKumar, S., Prasad, S., Yadav, K. K., Shrivastava, M., Gupta, N., Nagar, S., Bach, Q.-V., Kamyab, H., Khan, S. A., Yadav, S., & Malav, L. C. (2019). Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches—A review. Environmental Research, 179, 108792. https://doi.org/10.1016/j.envres.2019.108792
dc.relation.referencesKumar, V., Kumar, M., & Prasad, R. (Eds.). (2018). Phytobiont and Ecosystem Restitution. Springer. https://doi.org/10.1007/978-981-13-1187-1
dc.relation.referencesKumarathilaka, P., Oze, C., Indraratne, S. P., & Vithanage, M. (2016). Perchlorate as an emerging contaminant in soil, water and food. Chemosphere, 150, 667-677. https://doi.org/10.1016/j.chemosphere.2016.01.109
dc.relation.referencesLi, K., Du, P., Xu, Z., Gao, T., & Li, X. (2016). Occurrence of illicit drugs in surface waters in China. Environmental Pollution, 213, 395-402. https://doi.org/10.1016/j.envpol.2016.02.036
dc.relation.referencesLi, Y., Wu, M., Li, H., Xue, H., Tao, J., Li, M., Wang, F., Li, Y., Wang, J., & Li, S. (2023). Current advances in microplastic contamination in aquatic sediment: Analytical methods, global occurrence, and effects on elemental cycling. TrAC Trends in Analytical Chemistry, 168, 117331. https://doi.org/10.1016/j.trac.2023.117331
dc.relation.referencesLiao, Z., Cao, D., Gao, Z., & Zhang, S. (2020). Occurrence of perchlorate in processed foods manufactured in China. Food Control, 107, 106813. https://doi.org/10.1016/j.foodcont.2019.106813
dc.relation.referencesLiao, Z., Chen, Z., Wu, Y., Xu, A., Liu, J., & Hu, H.-Y. (2021). Identification of development potentials and routes of wastewater treatment and reuse for Asian countries by key influential factors and prediction models. Resources, Conservation and Recycling, 168, 105259. https://doi.org/10.1016/j.resconrec.2020.105259
dc.relation.referencesLima, M. F. B., Fernandes, G. M., Oliveira, A. H. B., Morais, P. C. V., Marques, E. V., Santos, F. R., Nascimento, R. F., Swarthout, R. F., Nelson, R. K., Reddy, C. M., & Cavalcante, R. M. (2019). Emerging and traditional organic markers: Baseline study showing the influence of untraditional anthropogenic activities on coastal zones with multiple activities (Ceará coast, Northeast Brazil). Marine Pollution Bulletin, 139, 256-262. https://doi.org/10.1016/j.marpolbul.2018.12.006
dc.relation.referencesLópez-Doval, J. C., Montagner, C. C., de Alburquerque, A. F., Moschini-Carlos, V., Umbuzeiro, G., & Pompêo, M. (2017). Nutrients, emerging pollutants and pesticides in a tropical urban reservoir: Spatial distributions and risk assessment. Science of The Total Environment, 575, 1307-1324. https://doi.org/10.1016/j.scitotenv.2016.09.210
dc.relation.referencesLozano, I., Pérez-Guzmán, C. J., Mora, A., Mahlknecht, J., Aguilar, C. L., & Cervantes-Avilés, P. (2022). Pharmaceuticals and personal care products in water streams: Occurrence, detection, and removal by electrochemical advanced oxidation processes. Science of The Total Environment, 827, 154348. https://doi.org/10.1016/j.scitotenv.2022.154348
dc.relation.referencesMaffini, M. V., Trasande, L., & Neltner, T. G. (2016). Perchlorate and Diet: Human Exposures, Risks, and Mitigation Strategies. Current environmental health reports, 3(2), 107-117. https://doi.org/10.1007/s40572-016-0090-3
dc.relation.referencesMagni, S., Della Torre, C., Garrone, G., D’Amato, A., Parenti, C. C., & Binelli, A. (2019). First evidence of protein modulation by polystyrene microplastics in a freshwater biological model. Environmental Pollution, 250, 407-415. https://doi.org/10.1016/j.envpol.2019.04.088
dc.relation.referencesMagro, C., Mateus, E. P., Paz-Garcia, J. M., & Ribeiro, A. B. (2020). Emerging organic contaminants in wastewater: Understanding electrochemical reactors for triclosan and its by-products degradation. Chemosphere, 247, 125758. https://doi.org/10.1016/j.chemosphere.2019.125758
dc.relation.referencesMani, T., Hauk, A., Walter, U., & Burkhardt-Holm, P. (2015). Microplastics profile along the Rhine River. Scientific Reports, 5(1), 17988. https://doi.org/10.1038/srep17988
dc.relation.referencesMarsden, P., Koelmans, A. A., Bourdon-Lacombe, J., Gouin, T., Anglada, L. D., Cunliffe, D., Jarvis, P., Fawell, J., & France, J. D. (2019). Microplastics in drinking water (p. ). World Health Organization. https://library.wur.nl/WebQuery/wurpubs/553048
dc.relation.referencesMartini, G. de A., Montagner, C. C., Viveiros, W., Quinaglia, G. A., França, D. D., Munin, N. C. G., Lopes-Ferreira, M., Rogero, S. O., & Rogero, J. R. (2021). Emerging contaminant occurrence and toxic effects on zebrafish embryos to assess the adverse effects caused by mixtures of substances in the environment. Environmental Science and Pollution Research, 28(16), 20313-20329. https://doi.org/10.1007/s11356-020-11963-x
dc.relation.referencesMattiske, D. M., & Pask, A. J. (2021). Endocrine disrupting chemicals in the pathogenesis of hypospadias; developmental and toxicological perspectives. Current Research in Toxicology, 2, 179-191. https://doi.org/10.1016/j.crtox.2021.03.004
dc.relation.referencesMeffe, R., & de Bustamante, I. (2014). Emerging organic contaminants in surface water and groundwater: A first overview of the situation in Italy. Science of The Total Environment, 481, 280-295. https://doi.org/10.1016/j.scitotenv.2014.02.053
dc.relation.referencesMeléndez-Marmolejo, J., García-Saavedra, Y., Galván-Romero, V., León-Martínez, L. D. de, Vargas-Berrones, K., Mejía-Saavedra, J., & Ramírez, R. F. (2020). Contaminantes emergentes. Problemática ambiental asociada al uso de antibióticos. Nuevas técnicas de detección, remediación y perspectivas de legislación en América Latina. Revista de Salud Ambiental, 20(1), Article 1.
dc.relation.referencesMiloloža, M., Bule, K., Ukić, Š., Cvetnić, M., Bolanča, T., Kušić, H., Bulatović, V. O., & Grgić, D. K. (2021). Ecotoxicological Determination of Microplastic Toxicity on Algae Chlorella sp.: Response Surface Modeling Approach. Water, Air, & Soil Pollution, 232(8), 327. https://doi.org/10.1007/s11270-021-05267-0
dc.relation.referencesMiranda-Peña, L., Urquijo, M., Arana, V. A., García-Alzate, R., García-Alzate, C. A., & Trilleras, J. (2023). Microplastics Occurrence in Fish from Tocagua Lake, Low Basin Magdalena River, Colombia. Diversity, 15(7), Article 7. https://doi.org/10.3390/d15070821
dc.relation.referencesMonroy-Licht, A. (2023). Effect of phosphate on arsenic species uptake in plants under hydroponic conditions. Journal of Plant Research, 136(5), 729-742. https://doi.org/10.1007/s10265-022-01381-0
dc.relation.referencesMonroy-Licht, A., Méndez-Cuadro, D., & Olivero-Verbel, J. (2023). Elemental mercury accumulation in Eichhornia crassipes (Mart.) Solms-Laubach. Environmental Science and Pollution Research, 30(4), 9898-9913. https://doi.org/10.1007/s11356-022-22521-y
dc.relation.referencesMukhopadhyay, A., Duttagupta, S., & Mukherjee, A. (2022). Emerging organic contaminants in global community drinking water sources and supply: A review of occurrence, processes and remediation. Journal of Environmental Chemical Engineering, 10(3), 107560. https://doi.org/10.1016/j.jece.2022.107560
dc.relation.referencesNarayanan, M., & Ma, Y. (2023). Metal tolerance mechanisms in plants and microbe-mediated bioremediation. Environmental Research, 222, 115413. https://doi.org/10.1016/j.envres.2023.115413
dc.relation.referencesNavarro, I., de la Torre, A., Sanz, P., Porcel, M. Á., Pro, J., Carbonell, G., & Martínez, M. de los Á. (2017). Uptake of perfluoroalkyl substances and halogenated flame retardants by crop plants grown in biosolids-amended soils. Environmental Research, 152, 199-206. https://doi.org/10.1016/j.envres.2016.10.018
dc.relation.referencesNavarro, I., de la Torre, A., Sanz, P., Pro, J., Carbonell, G., & Martínez, M. de los Á. (2016). Bioaccumulation of emerging organic compounds (perfluoroalkyl substances and halogenated flame retardants) by earthworm in biosolid amended soils. Environmental Research, 149, 32-39. https://doi.org/10.1016/j.envres.2016.05.004
dc.relation.referencesNguyen, M.-K., Lin, C., Nguyen, H.-L., Le, V.-R., Kl, P., Singh, J., Chang, S. W., Um, M.-J., & Nguyen, D. D. (2023). Emergence of microplastics in the aquatic ecosystem and their potential effects on health risks: The insights into Vietnam. Journal of Environmental Management, 344, 118499. https://doi.org/10.1016/j.jenvman.2023.118499
dc.relation.referencesNiziński, P., Błażewicz, A., Kończyk, J., & Michalski, R. (2021). Perchlorate – properties, toxicity and human health effects: An updated review. Reviews on Environmental Health, 36(2), 199-222. https://doi.org/10.1515/reveh-2020-0006
dc.relation.referencesNoguera-Oviedo, K., & Aga, D. S. (2016). Lessons learned from more than two decades of research on emerging contaminants in the environment. Journal of Hazardous Materials, 316, 242-251. https://doi.org/10.1016/j.jhazmat.2016.04.058
dc.relation.referencesPalacios-Torres, Y., de la Rosa, J. D., & Olivero-Verbel, J. (2020). Trace elements in sediments and fish from Atrato River: An ecosystem with legal rights impacted by gold mining at the Colombian Pacific. Environmental Pollution, 256, 113290. https://doi.org/10.1016/j.envpol.2019.113290
dc.relation.referencesPatel, P., Raju, N. J., Reddy, B. C. S. R., Suresh, U., Sankar, D. B., & Reddy, T. V. K. (2018). Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: Risk assessment and environmental implications. Environmental Geochemistry and Health, 40(2), 609-623. https://doi.org/10.1007/s10653-017-0006-7
dc.relation.referencesPinho, I., Amezcua, F., Rivera, J. M., Green-Ruiz, C., Piñón-Colin, T. de J., & Wakida, F. (2022). First report of plastic contamination in batoids: Plastic ingestion by Haller’s Round Ray (Urobatis halleri) in the Gulf of California. Environmental Research, 211, 113077. https://doi.org/10.1016/j.envres.2022.113077
dc.relation.referencesPizzochero, A. C., de la Torre, A., Sanz, P., Navarro, I., Michel, L. N., Lepoint, G., Das, K., Schnitzler, J. G., Chenery, S. R., McCarthy, I. D., Malm, O., Dorneles, P. R., & Martínez, M. Á. (2019). Occurrence of legacy and emerging organic pollutants in whitemouth croakers from Southeastern Brazil. Science of The Total Environment, 682, 719-728. https://doi.org/10.1016/j.scitotenv.2019.05.213
dc.relation.referencesPogrzeba, M., Ciszek, D., Galimska-Stypa, R., Nowak, B., & Sas-Nowosielska, A. (2016). Ecological strategy for soil contaminated with mercury. Plant and Soil, 409(1), 371-387. https://doi.org/10.1007/s11104-016-2936-8
dc.relation.referencesPropp, V. R., De Silva, A. O., Spencer, C., Brown, S. J., Catingan, S. D., Smith, J. E., & Roy, J. W. (2021). Organic contaminants of emerging concern in leachate of historic municipal landfills. Environmental Pollution, 276, 116474. https://doi.org/10.1016/j.envpol.2021.116474
dc.relation.referencesQuadra, G. R., Li, Z., Barros, N., Roland, F., & Sobek, A. (2021). Micropollutants in four Brazilian water reservoirs. Limnologica, 90, 125902. https://doi.org/10.1016/j.limno.2021.125902
dc.relation.referencesRaihan, S. M., Moniruzzaman, M., Park, Y., Lee, S., & Bai, S. C. (2020). Evaluation of Dietary Organic and Inorganic Mercury Threshold Levels on Induced Mercury Toxicity in a Marine Fish Model. Animals, 10(3), Article 3. https://doi.org/10.3390/ani10030405
dc.relation.referencesReichert, G., Hilgert, S., Fuchs, S., & Azevedo, J. C. R. (2019). Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America. Environmental Pollution, 255, 113140. https://doi.org/10.1016/j.envpol.2019.113140
dc.relation.referencesRogers, E. R., Zalesny, R. S., & Lin, C.-H. (2021). A systematic approach for prioritizing landfill pollutants based on toxicity: Applications and opportunities. Journal of Environmental Management, 284, 112031. https://doi.org/10.1016/j.jenvman.2021.112031
dc.relation.referencesRojas-Luna, R. A., Oquendo-Ruiz, L., García-Alzate, C. A., Arana, V. A., García-Alzate, R., & Trilleras, J. (2023). Identification, Abundance, and Distribution of Microplastics in Surface Water Collected from Luruaco Lake, Low Basin Magdalena River, Colombia. Water, 15(2), Article 2. https://doi.org/10.3390/w15020344
dc.relation.referencesRoveri, V., Guimarães, L. L., Toma, W., & Correia, A. T. (2021). Occurrence and ecological risk assessment of pharmaceuticals and cocaine in the urban drainage channels of Santos beaches (São Paulo, Brazil): A neglected, but sensitive issue. Environmental Science and Pollution Research, 28(46), 65595-65609. https://doi.org/10.1007/s11356-021-15249-8
dc.relation.referencesRzymski, P., Losiak, A., Heinz, J., Szukalska, M., Florek, E., Poniedziałek, B., Schulze-Makuch, D. (2024). Perchlorates on Mars: Occurrence and implications for putative life on the Red Planet. Icarus, 116246. https://doi.org/10.1016/j.icarus.2024.116246
dc.relation.referencesSantos, A. V., Couto, C. F., Lebron, Y. A. R., Moreira, V. R., Foureaux, A. F. S., Reis, E. O., Santos, L. V. de S., de Andrade, L. H., Amaral, M. C. S., & Lange, L. C. (2020). Occurrence and risk assessment of pharmaceutically active compounds in water supply systems in Brazil. Science of The Total Environment, 746, 141011. https://doi.org/10.1016/j.scitotenv.2020.141011
dc.relation.referencesSarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., Rehim, A., & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710-721. https://doi.org/10.1016/j.chemosphere.2016.12.116
dc.relation.referencesSeralini, G.-E., & Jungers, G. (2021). Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs). Toxicology Reports, 8, 1538-1557. https://doi.org/10.1016/j.toxrep.2021.07.014
dc.relation.referencesSierra-Marquez, L., Espinosa-Araujo, J., Atencio-Garcia, V., & Olivero-Verbel, J. (2019). Effects of cadmium exposure on sperm and larvae of the neotropical fish Prochilodus magdalenae. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 225, 108577. https://doi.org/10.1016/j.cbpc.2019.108577
dc.relation.referencesSotão Neto, B. M. T., Combi, T., Taniguchi, S., Albergaria-Barbosa, A. C. R., Ramos, R. B., Figueira, R. C. L., & Montone, R. C. (2020). Persistent organic pollutants (POPs) and personal care products (PCPs) in the surface sediments of a large tropical bay (Todos os Santos Bay, Brazil). Marine Pollution Bulletin, 161, 111818. https://doi.org/10.1016/j.marpolbul.2020.111818
dc.relation.referencesSouza, I. C., Morozesk, M., Azevedo, V. C., Mendes, V. A. S., Duarte, I. D., Rocha, L. D., Matsumoto, S. T., Elliott, M., Baroni, M. V., Wunderlin, D. A., Monferrán, M. V., & Fernandes, M. N. (2021). Trophic transfer of emerging metallic contaminants in a neotropical mangrove ecosystem food web. Journal of Hazardous Materials, 408, 124424. https://doi.org/10.1016/j.jhazmat.2020.124424
dc.relation.referencesStarling, M. C. V. M., Amorim, C. C., & Leão, M. M. D. (2019). Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil. Journal of Hazardous Materials, 372, 17-36. https://doi.org/10.1016/j.jhazmat.2018.04.043
dc.relation.referencesSteinmaus, C. M. (2016). Perchlorate in Water Supplies: Sources, Exposures, and Health Effects. Current Environmental Health Reports, 3(2), 136-143. https://doi.org/10.1007/s40572-016-0087-y
dc.relation.referencesSun, W. H., Jiang, Y. X., & Li, X. (2013). Research of the Evaluation on Heavy-Metal Pollution in Rice by Sewage Irrigation. Applied Mechanics and Materials, 295-298, 1594-1599. https://doi.org/10.4028/www.scientific.net/AMM.295-298.1594
dc.relation.referencesTabe, S., Pileggi, V., Nowierski, M., Kleywegt, S., & Yang, P. (2016). Occurrence, removal, and environmental impacts of emerging contaminants detected in water and wastewater in Southern Ontario—Part I: occurrence and removal. Water Practice and Technology, 11(2), 298-314. https://doi.org/10.2166/wpt.2016.035
dc.relation.referencesTejeda-Benitez, L., Flegal, R., Odigie, K., & Olivero-Verbel, J. (2016). Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. Environmental Pollution, 212, 238-250. https://doi.org/10.1016/j.envpol.2016.01.057
dc.relation.referencesTchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology: volume 3: environmental toxicology, 133-164. https://doi.org/10.1007/978-3-7643-8340-4_6
dc.relation.referencesTran, N. H., Reinhard, M., & Gin, K. Y.-H. (2018). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Research, 133, 182-207. https://doi.org/10.1016/j.watres.2017.12.029
dc.relation.referencesValcárcel, Y., Martínez, F., González-Alonso, S., Segura, Y., Catalá, M., Molina, R., Montero-Rubio, J. C., Mastroianni, N., López de Alda, M., Postigo, C., & Barceló, D. (2012). Drugs of abuse in surface and tap waters of the Tagus River basin: Heterogeneous photo-Fenton process is effective in their degradation. Environment International, 41, 35-43. https://doi.org/10.1016/j.envint.2011.12.006
dc.relation.referencesValdés, M. E., Santos, L. H. M. L. M., Rodríguez Castro, M. C., Giorgi, A., Barceló, D., Rodríguez-Mozaz, S., & Amé, M. V. (2021). Distribution of antibiotics in water, sediments and biofilm in an urban river (Córdoba, Argentina, LA). Environmental Pollution, 269, 116133. https://doi.org/10.1016/j.envpol.2020.116133
dc.relation.referencesVergilio, C. S., Carvalho, C. E. V., & Melo, E. J. T. (2015). Mercury-induced dysfunctions in multiple organelles leading to cell death. Toxicology in Vitro, 29(1), 63-71. https://doi.org/10.1016/j.tiv.2014.09.006
dc.relation.referencesVimalkumar, K., Sangeetha, S., Felix, L., Kay, P., & Pugazhendhi, A. (2022). A systematic review on toxicity assessment of persistent emerging pollutants (EPs) and associated microplastics (MPs) in the environment using the Hydra animal model. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 256, 109320. https://doi.org/10.1016/j.cbpc.2022.109320
dc.relation.referencesvon Ameln Lovison, O., Jank, L., de Souza, W. M., Ramalho Guerra, R., Lamas, A. E., da Costa Ballestrin, R. A., da Silva Morais Hein, C., da Silva, T. C. B., Corção, G., & Martins, A. F. (2021). Identification of pesticides in water samples by solid-phase extraction and liquid chromatography–electrospray ionization mass spectrometry. Water Environment Research, 93(11), 2670-2680. https://doi.org/10.1002/wer.1621
dc.relation.referencesWang, X., Li, C., Liu, K., Zhu, L., Song, Z., & Li, D. (2020). Atmospheric microplastic over the South China Sea and East Indian Ocean: Abundance, distribution and source. Journal of Hazardous Materials, 389, 121846. https://doi.org/10.1016/j.jhazmat.2019.121846
dc.relation.referencesWilkinson, J., Hooda, P. S., Barker, J., Barton, S., & Swinden, J. (2017). Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environmental Pollution, 231, 954-970. https://doi.org/10.1016/j.envpol.2017.08.032
dc.relation.referencesWyatt, L. H., Luz, A. L., Cao, X., Maurer, L. L., Blawas, A. M., Aballay, A., Pan, W. K. Y., & Meyer, J. N. (2017). Effects of methyl and inorganic mercury exposure on genome homeostasis and mitochondrial function in Caenorhabditis elegans. DNA Repair, 52, 31-48. https://doi.org/10.1016/j.dnarep.2017.02.005
dc.relation.referencesYang, M., & Her, N. (2011). Perchlorate in Soybean Sprouts (Glycine max L. Merr.), Water Dropwort (Oenanthe stolonifera DC.), and Lotus (Nelumbo nucifera Gaertn.) Root in South Korea. Journal of Agricultural and Food Chemistry, 59(13), 7490-7495. https://doi.org/10.1021/jf2009638
dc.relation.referencesYu, H., Chen, Q., Qiu, W., Ma, C., Gao, Z., Chu, W., & Shi, H. (2022). Concurrent water- and foodborne exposure to microplastics leads to differential microplastic ingestion and neurotoxic effects in zebrafish. Water Research, 219, 118582. https://doi.org/10.1016/j.watres.2022.118582
dc.relation.referencesZini, L. B., & Gutterres, M. (2021). Chemical contaminants in Brazilian drinking water: A systematic review. Journal of Water and Health, 19(3), 351-369. https://doi.org/10.2166/wh.2021.264
dc.relation.referencesZhu, L., Jiang, C., Panthi, S., Allard, S. M., Sapkota, A. R., & Sapkota, A. (2021). Impact of high precipitation and temperature events on the distribution of emerging contaminants in surface water in the Mid-Atlantic, United States. Science of the Total Environment, 755, 142552. https://doi.org/10.1016/j.scitotenv.2020.142552
dc.rightsProhibida la reproducción tptal o parcial, sin autorización de los autores, declaración de derechos de autor.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.coarhttp://purl.org/coar/access_right/c_abf2
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.armarcMetales pesados ​​-- Toxicologí
dc.subject.armarcCalidad del agua -- Monitoreo
dc.subject.armarcDisruptores endocrinos
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
dc.subject.lembWater -- Pollution
dc.subject.lembHeavy metals -- Toxicology
dc.subject.lembEmerging contaminants
dc.subject.lembPharmaceuticals -- Environmental aspects
dc.subject.lembMicroplastics -- Environmental impact
dc.subject.lembWater quality -- Monitorin
dc.subject.lembEndocrine disrupting chemical
dc.subject.lembAgua -- Contaminación
dc.subject.lembProductos farmacéuticos -- Aspectos ambientales
dc.subject.lembContaminantes emergentes
dc.subject.lembMicroplásticos -- Impacto ambiental
dc.subject.ocde1. Ciencias Naturales
dc.subject.odsODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades
dc.subject.proposalAquatic toxicology
dc.subject.proposalEndocrine disruption
dc.subject.proposalEmerging pollutants
dc.subject.proposalTropical ecotoxicology
dc.titleEmerging and traditional pollutants in water resources: A perspective on the American Continent
dc.typeArtículo de revista
dc.type.coarhttp://purl.org/coar/resource_type/c_18cf
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/article
dc.type.redcolhttp://purl.org/redcol/resource_type/ART
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dcterms.audienceComunidad Científica nacional e internacional.
dspace.entity.typePublication
relation.isAuthorOfPublication74ceb186-b60b-4210-9548-9a89e1a8f37b
relation.isAuthorOfPublicationf428bf31-0676-48a7-b388-35f7f51dbbfa
relation.isAuthorOfPublication.latestForDiscovery74ceb186-b60b-4210-9548-9a89e1a8f37b

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Emerging contaminants_Review_ok.pdf
Tamaño:
702.64 KB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
14.49 KB
Formato:
Item-specific license agreed upon to submission
Descripción: