Publicación: Emerging and traditional pollutants in water resources: A perspective on the American Continent
| dc.contributor.author | De la Parra-Guerra, Ana C. | |
| dc.contributor.author | Acevedo Barrios, Rosa Leonor | |
| dc.contributor.author | Carvajal-Ruiz, Angie | |
| dc.contributor.author | MONROY-LICHT, ANDREA | |
| dc.contributor.author | Retamoza-Chamorro, Katy | |
| dc.contributor.researchgroup | Grupo de Investigación Estudios Químicos y Biológicos | |
| dc.contributor.seedbeds | Semillero de Investigación en Ciencias Ambientales | |
| dc.coverage.temporal | Internacionacional y Nacional | |
| dc.date.accessioned | 2025-11-27T19:18:10Z | |
| dc.date.issued | 2025-11-19 | |
| dc.description | Contiene ilustraciones | |
| dc.description.abstract | The increasing presence of emerging contaminants (ECs) is directly associated with the widespread use of personal care products, pharmaceuticals, illicit drugs, microplastics, and other organic and inorganic compounds driven by modern consumer culture. These substances, often unregulated, continuously enter the environment through sewage, domestic and industrial effluents, and inefficient wastewater treatment, leading to endocrine disruption and reproductive issues in wildlife, as well as broader ecological and human health risks. In contrast to traditional pollutants (TPs) such as heavy metals, which are better studied, and partially regulated ECs remain a growing concern due to their persistence and unknown long-term effects. Even though efforts have been made to standardize some heavy metals, their toxicity still poses challenges to water quality and public health. Therefore, continuous monitoring of both ECs and TPs is crucial to track contamination sources, assess environmental and health impacts, and support the development of remediation technologies and environmental policies. This review aimed to compile and analyze scientific literature on the incidence and effects of ECs and TPs in water resources, focusing on their most common types, environmental pathways, and biological models used for toxicity testing. The bibliometric analysis encompassed 200 research articles from the Americas, highlighting the most studied contaminants, methodological trends, and data essential for modeling pollution dynamics and guiding evidence-based decisions. The findings provide a foundational framework for improving water resource management and underscore the urgent need to integrate ECs into regulatory and monitoring programs to ensure aquatic ecosystem sustainability. | |
| dc.description.researcharea | Microbiología y toxicología ambiental | |
| dc.description.tableofcontents | 1. INTRODUCTION 2. METHODOLOGY 3. RESULTS AND DISCUSSION 4. CONCLUSION 5. REFERENCES | |
| dc.description.technicalinfo | No Aplica | |
| dc.format.extent | 28 páginas | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.citation | Ana C De la Parra-Guerra, Rosa Acevedo-Barrios, Angie Carvajal-Ruiz, Andrea Monroy-Licht, Katy Retamoza-Chamorro, Emerging and traditional contaminants in water resources: a review from the perspective of the American continent, Environmental Toxicology and Chemistry, 2025;, vgaf279, https://doi.org/10.1093/etojnl/vgaf279 | |
| dc.identifier.other | DOI: 10.1093/etojnl/vgaf279 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12585/14277 | |
| dc.language.iso | eng | |
| dc.publisher | Environmental Toxicology and Chemistry | |
| dc.relation.references | Abreu, F. E. L., Batista, R. M., Castro, Í. B., & Fillmann, G. (2021). Legacy and emerging antifouling biocide residues in a tropical estuarine system (Espirito Santo state, SE, Brazil). Marine Pollution Bulletin, 166, 112255. https://doi.org/10.1016/j.marpolbul.2021.112255 | |
| dc.relation.references | Acevedo Barrios, R. L., Hernández Rocha, I., Puentes Martinez, D., Rubiano-Labrador, C., Pasqualino, J., Chavarro-Mesa, E., & De la parra-Guerra, A. C. (2023). Psychrobacter sp: Perchlorate reducing bacteria, isolated from marine sediments from Margarita Bay, Antarctica. https://laccei.org/LACCEI2023-BuenosAires/meta/FP995.html | |
| dc.relation.references | Acevedo-Barrios, R., Bertel-Sevilla, A., Alonso-Molina, J., & Olivero-Verbel, J. (2019). Perchlorate-Reducing Bacteria from Hypersaline Soils of the Colombian Caribbean. International Journal of Microbiology, 2019, 1-13. https://doi.org/10.1155/2019/6981865 | |
| dc.relation.references | Acevedo-Barrios, R., & Olivero-Verbel, J. (2021). Perchlorate Contamination: Sources, Effects, and Technologies for Remediation. En P. de Voogt (Ed.), Reviews of Environmental Contamination and Toxicology Volume 256 (pp. 103-120). Springer International Publishing. https://doi.org/10.1007/398_2021_66 | |
| dc.relation.references | Acevedo-Barrios, R., Rubiano-Labrador, C., & Miranda-Castro, W. (2022). Presence of perchlorate in marine sediments from Antarctica during 2017–2020. Environmental Monitoring and Assessment, 194(2), 102. https://doi.org/10.1007/s10661-022-09765-4 | |
| dc.relation.references | Acevedo-Barrios, R., Rubiano-Labrador, C., Navarro-Narvaez, D., Escobar-Galarza, J., González, D., Mira, S., Moreno, D., Contreras, A., & Miranda-Castro, W. (2022). Perchlorate-reducing bacteria from Antarctic marine sediments. Environmental Monitoring and Assessment, 194(9), 654. https://doi.org/10.1007/s10661-022-10328-w | |
| dc.relation.references | Acevedo-Barrios, R., Sabater-Marco, C., & Olivero-Verbel, J. (2018). Ecotoxicological assessment of perchlorate using in vitro and in vivo assays. Environmental Science and Pollution Research, 25(14), 13697-13708. https://doi.org/10.1007/s11356-018-1565-6 | |
| dc.relation.references | Acevedo-Barrios, R., Sabater-Marco, C., & Olivero-Verbel, J. (2019). Perchlorate toxicity in organisms from different trophic levels. September 2-3. https://doi.org/10.1016/j.toxlet.2019.09.002 | |
| dc.relation.references | Acevedo-Barrios, R., Tirado-Ballestas, I., Bertel-Sevilla, A., Cervantes-Ceballos, L., Gallego, J. L., Leal, M. A., Tovar, D., & Olivero-Verbel, J. (2024). Bioprospecting of extremophilic perchlorate-reducing bacteria: Report of promising Bacillus spp. isolated from sediments of the bay of Cartagena, Colombia. Biodegradation. https://doi.org/10.1007/s10532-024-10079-0 | |
| dc.relation.references | Acosta-Coley, I., Duran-Izquierdo, M., Rodriguez-Cavallo, E., Mercado-Camargo, J., Mendez-Cuadro, D., & Olivero-Verbel, J. (2019b). Quantification of microplastics along the Caribbean Coastline of Colombia: Pollution profile and biological effects on Caenorhabditis elegans. Marine Pollution Bulletin, 146, 574-583. https://doi.org/10.1016/j.marpolbul.2019.06.084 | |
| dc.relation.references | costa-Coley, I., Mendez-Cuadro, D., Rodriguez-Cavallo, E., de la Rosa, J., & Olivero-Verbel, J. (2019a). Trace elements in microplastics in Cartagena: A hotspot for plastic pollution at the Caribbean. Marine Pollution Bulletin, 139, 402-411. https://doi.org/10.1016/j.marpolbul.2018.12.016 | |
| dc.relation.references | Acosta-Coley, I., & Olivero-Verbel, J. (2015). Microplastic resin pellets on an urban tropical beach in Colombia. Environmental Monitoring and Assessment, 187(7), 435. https://doi.org/10.1007/s10661-015-4602-7 | |
| dc.relation.references | Ali, H., & Khan, E. (2018). What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’–proposal of a comprehensive definition. Toxicological & Environmental Chemistry, 100(1), 6-19. https://doi.org/10.1080/02772248.2017.1413652 | |
| dc.relation.references | Alcala-Orozco, M., Caballero-Gallardo, K., & Olivero-Verbel, J. (2020). Biomonitoring of Mercury, Cadmium and Selenium in Fish and the Population of Puerto Nariño, at the Southern Corner of the Colombian Amazon. Archives of Environmental Contamination and Toxicology, 79(3), 354-370. https://doi.org/10.1007/s00244-020-00761-8 | |
| dc.relation.references | Alloway, B. J. (2013). Sources of Heavy Metals and Metalloids in Soils. En B. J. Alloway (Ed.), Heavy Metals in Soils: Trace Metals and Metalloids in Soils and their Bioavailability (pp. 11-50). Springer Netherlands. https://doi.org/10.1007/978-94-007-4470-7_2 | |
| dc.relation.references | Alonso, Á., Figueroa, R., & Castro-Díez, P. (2017). Pollution Assessment of the Biobío River (Chile): Prioritization of Substances of Concern Under an Ecotoxicological Approach. Environmental Management, 59(5), 856-869. https://doi.org/10.1007/s00267-017-0824-5 | |
| dc.relation.references | Amara, I. E. A., Elshenawy, O. H., Abdelrady, M., & El-Kadi, A. O. S. (2014). Acute mercury toxicity modulates cytochrome P450, soluble epoxide hydrolase and their associated arachidonic acid metabolites in C57Bl/6 mouse heart. Toxicology Letters, 226(1), 53-62. https://doi.org/10.1016/j.toxlet.2014.01.025 | |
| dc.relation.references | Amir, W., Farid, M., Ishaq, H. K., Farid, S., Zubair, M., Alharby, H. F., Bamagoos, A. A., Rizwan, M., Raza, N., Hakeem, K. R., & Ali, S. (2020). Accumulation potential and tolerance response of Typha latifolia L. under citric acid-assisted phytoextraction of lead and mercury. Chemosphere, 257, 127247. https://doi.org/10.1016/j.chemosphere.2020.127247 | |
| dc.relation.references | Andresen, J. A., Muir, D., Ueno, D., Darling, C., Theobald, N., & Bester, K. (2007). Emerging pollutants in the North Sea in comparison to Lake Ontario, Canada, data. Environmental Toxicology and Chemistry, 26(6), 1081-1089. https://doi.org/10.1897/06-416R.1 | |
| dc.relation.references | Arsand, J. B., Hoff, R. B., Jank, L., Meirelles, L. N., Silvia Díaz-Cruz, M., Pizzolato, T. M., & Barceló, D. (2018). Transformation products of amoxicillin and ampicillin after photolysis in aqueous matrices: Identification and kinetics. Science of The Total Environment, 642, 954-967. https://doi.org/10.1016/j.scitotenv.2018.06.122 | |
| dc.relation.references | Artisanal Gold Council. (2014). Mercury Watch: Charting the improvement of artisanal small-scale gold mining. 24 Noviembre 2014.[En línea]. Available: http://www. mercurywatch. org. | |
| dc.relation.references | Asati, A., Pichhode, M., Nikhil, K. (2016). Effect of heavy metals on plants: an overview. International Journal of Application or Innovation in Engineering & Management, 5(3), 56-66. | |
| dc.relation.references | Barakat, M. A. (2011). New trends in removing heavy metals from industrial wastewater. Arabian Journal of Chemistry, 4(4), 361-377. https://doi.org/10.1016/j.arabjc.2010.07.019 | |
| dc.relation.references | edoya-Ríos, D. F., Lara-Borrero, J. A., Duque-Pardo, V., Madera-Parra, C. A., Jimenez, E. M., & Toro, A. F. (2018). Study of the occurrence and ecosystem danger of selected endocrine disruptors in the urban water cycle of the city of Bogotá, Colombia. Journal of Environmental Science and Health, Part A, 53(4), 317-325. https://doi.org/10.1080/10934529.2017.1401372 | |
| dc.relation.references | Borrelle, S. B., Ringma, J., Law, K. L., Monnahan, C. C., Lebreton, L., McGivern, A., Murphy, E., Jambeck, J., Leonard, G. H., Hilleary, M. A., Eriksen, M., Possingham, H. P., De Frond, H., Gerber, L. R., Polidoro, B., Tahir, A., Bernard, M., Mallos, N., Barnes, M., & Rochman, C. M. (2020). Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science, 369(6510), 1515-1518. https://doi.org/10.1126/science.aba3656 | |
| dc.relation.references | Browne, M. A., Crump, P., Niven, S. J., Teuten, E., Tonkin, A., Galloway, T., & Thompson, R. (2011). Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environmental Science & Technology, 45(21), 9175-9179. https://doi.org/10.1021/es201811s | |
| dc.relation.references | Bruins, M. R., Kapil, S., & Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and environmental safety, 45(3), 198-207 https://doi.org/10.1006/eesa.1999.1860. | |
| dc.relation.references | Campestrini, I., & Jardim, W. F. (2017). Occurrence of cocaine and benzoylecgonine in drinking and source water in the São Paulo State region, Brazil. Science of The Total Environment, 576, 374-380. https://doi.org/10.1016/j.scitotenv.2016.10.089 | |
| dc.relation.references | Cao, F., Jaunat, J., Sturchio, N., Cancès, B., Morvan, X., Devos, A., Barbin, V., & Ollivier, P. (2019). Worldwide occurrence and origin of perchlorate ion in waters: A review. Science of The Total Environment, 661, 737-749. https://doi.org/10.1016/j.scitotenv.2019.01.107 | |
| dc.relation.references | Carneiro, M. F. H., Oliveira Souza, J. M., Grotto, D., Batista, B. L., de Oliveira Souza, V. C., & Barbosa, F. (2014). A systematic study of the disposition and metabolism of mercury species in mice after exposure to low levels of thimerosal (ethylmercury). Environmental Research, 134, 218-227. https://doi.org/10.1016/j.envres.2014.07.009 | |
| dc.relation.references | Carrasco, J. del C. R., Delgado, C. Y. S., & Cobos, D. F. O. (2017). Contaminantes emergentes y su impacto en la salud. Emerging contaminants and its impact on the health. Revista de la Facultad de Ciencias Médicas de la Universidad de Cuenca, 35(2), Article 2. | |
| dc.relation.references | Celis-Hernández, O., Ávila, E., Ward, R. D., Rodríguez-Santiago, M. A., & Aguirre-Téllez, J. A. (2021). Microplastic distribution in urban vs pristine mangroves: Using marine sponges as bioindicators of environmental pollution. Environmental Pollution, 284, 117391. https://doi.org/10.1016/j.envpol.2021.117391 | |
| dc.relation.references | Chaves, M. de J. S., Barbosa, S. C., Malinowski, M. de M., Volpato, D., Castro, Í. B., Franco, T. C. R. dos S., & Primel, E. G. (2020). Pharmaceuticals and personal care products in a Brazilian wetland of international importance: Occurrence and environmental risk assessment. Science of The Total Environment, 734, 139374. https://doi.org/10.1016/j.scitotenv.2020.139374 | |
| dc.relation.references | Correa, L., Rea, L. D., Bentzen, R., & O’Hara, T. M. (2014). Assessment of mercury and selenium tissular concentrations and total mercury body burden in 6 Steller sea lion pups from the Aleutian Islands. Marine Pollution Bulletin, 82(1), 175-182. https://doi.org/10.1016/j.marpolbul.2014.02.022 | |
| dc.relation.references | Cristale, J., Oliveira Santos, I., Umbuzeiro, G. de A., & Fagnani, E. (2021). Occurrence and risk assessment of organophosphate esters in urban rivers from Piracicaba watershed (Brazil). Environmental Science and Pollution Research, 28(42), 59244-59255. https://doi.org/10.1007/s11356-020-10150-2 | |
| dc.relation.references | ruz-López, A., Dávila-Pórcel, R. A., de León-Gómez, H., Rodríguez-Martínez, J. M., Suárez-Vázquez, S. I., Cardona-Benavides, A., Castro-Larragoitia, G. J., Boreselli, L., de Lourdes Villalba, M., Pinales-Munguía, A., Silva-Hidalgo, H., de la Garza, R., & del Socorro Espino-Valdes, M. (2020). Exploratory study on the presence of bisphenol A and bis(2-ethylhexyl) phthalate in the Santa Catarina River in Monterrey, N.L., Mexico. Environmental Monitoring and Assessment, 192(8), 488. https://doi.org/10.1007/s10661-020-08446-4 | |
| dc.relation.references | da Costa Araújo, A. P., de Melo, N. F. S., de Oliveira Junior, A. G., Rodrigues, F. P., Fernandes, T., de Andrade Vieira, J. E., Rocha, T. L., & Malafaia, G. (2020). How much are microplastics harmful to the health of amphibians? A study with pristine polyethylene microplastics and Physalaemus cuvieri. Journal of Hazardous Materials, 382, 121066. https://doi.org/10.1016/j.jhazmat.2019.121066 | |
| dc.relation.references | de Aquino, S. F., Brandt, E. M. F., Bottrel, S. E. C., Gomes, F. B. R., & Silva, S. de Q. (2021). Occurrence of Pharmaceuticals and Endocrine Disrupting Compounds in Brazilian Water and the Risks They May Represent to Human Health. International Journal of Environmental Research and Public Health, 18(22), 11765. https://doi.org/10.3390/ijerph182211765 | |
| dc.relation.references | De la Parra-Guerra, A. C., & Acevedo-Barrios, R. (2023). Studies of Endocrine Disruptors: Nonylphenol and Isomers in Biological Models. Environmental Toxicology and Chemistry, 42(7), 1439-1450. https://doi.org/10.1002/etc.5633 | |
| dc.relation.references | De la Parra-Guerra, A., & Olivero-Verbel, J. (2020). Toxicity of nonylphenol and nonylphenol ethoxylate on Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 187, 109709. https://doi.org/10.1016/j.ecoenv.2019.109709 | |
| dc.relation.references | De la Parra-Guerra, A., Stürzenbaum, S., & Olivero-Verbel, J. (2020). Intergenerational toxicity of nonylphenol ethoxylate (NP-9) in Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 197, 110588. https://doi.org/10.1016/j.ecoenv.2020.110588 | |
| dc.relation.references | Dey, M., Akter, A., Islam, S., Dey, S. C., Choudhury, T. R., Fatema, K. J., & Begum, B. A. (2021). Assessment of contamination level, pollution risk and source apportionment of heavy metals in the Halda River water, Bangladesh. Heliyon, 7(12). https://doi.org/10.1016/j.heliyon.2021.e08625 | |
| dc.relation.references | do Amaral, D. F., Montalvão, M. F., de Oliveira Mendes, B., da Costa Araújo, A. P., de Lima Rodrigues, A. S., & Malafaia, G. (2019). Sub-lethal effects induced by a mixture of different pharmaceutical drugs in predicted environmentally relevant concentrations on Lithobates catesbeianus (Shaw, 1802) (Anura, ranidae) tadpoles. Environmental Science and Pollution Research, 26(1), 600-616. https://doi.org/10.1007/s11356-018-3656-9 | |
| dc.relation.references | dos Santos, D. M., Buruaem, L., Gonçalves, R. M., Williams, M., Abessa, D. M. S., Kookana, R., & de Marchi, M. R. R. (2018). Multiresidue determination and predicted risk assessment of contaminants of emerging concern in marine sediments from the vicinities of submarine sewage outfalls. Marine Pollution Bulletin, 129(1), 299-307. https://doi.org/10.1016/j.marpolbul.2018.02.048 | |
| dc.relation.references | Du, Z., Xiao, C., Furdui, V. I., & Zhang, W. (2019). The perchlorate record during 1956–2004 from Tienshan ice core, East Asia. Science of The Total Environment, 656, 1121-1132. https://doi.org/10.1016/j.scitotenv.2018.11.456 | |
| dc.relation.references | Egbuna, C., Amadi, C. N., Patrick-Iwuanyanwu, K. C., Ezzat, S. M., Awuchi, C. G., Ugonwa, P. O., & Orisakwe, O. E. (2021). Emerging pollutants in Nigeria: A systematic review. Environmental Toxicology and Pharmacology, 85, 103638. https://doi.org/10.1016/j.etap.2021.103638 | |
| dc.relation.references | Elliott, S. M., Brigham, M. E., Lee, K. E., Banda, J. A., Choy, S. J., Gefell, D. J., & Jorgenson, Z. G. (2017). Contaminants of emerging concern in tributaries to the Laurentian Great Lakes: I. Patterns of occurrence. PloS one, 12(9), e0182868. https://doi.org/10.1371/journal.pone.0182868 | |
| dc.relation.references | nyoh, C. E., Verla, A. W., Qingyue, W., Ohiagu, F. O., Chowdhury, A. H., Enyoh, E. C., Chowdhury, T., Verla, E. N., & Chinwendu, U. P. (2020). An overview of emerging pollutants in air: Method of analysis and potential public health concern from human environmental exposure. Trends in Environmental Analytical Chemistry, 28, e00107. https://doi.org/10.1016/j.teac.2020.e00107 | |
| dc.relation.references | Eriksen, M., Lebreton, L. C. M., Carson, H. S., Thiel, M., Moore, C. J., Borerro, J. C., Galgani, F., Ryan, P. G., & Reisser, J. (2014). Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLOS ONE, 9(12), e111913. https://doi.org/10.1371/journal.pone.0111913 | |
| dc.relation.references | Franceschini, M. D., Evers, D. C., Kenow, K. P., Meyer, M. W., Pokras, M., & Romero, L. M. (2017). Mercury correlates with altered corticosterone but not testosterone or estradiol concentrations in common loons. Ecotoxicology and Environmental Safety, 142, 348-354. https://doi.org/10.1016/j.ecoenv.2017.04.030 | |
| dc.relation.references | Frias, J. P. G. L., Sobral, P., & Ferreira, A. M. (2010). Organic pollutants in microplastics from two beaches of the Portuguese coast. Marine Pollution Bulletin, 60(11), 1988-1992. https://doi.org/10.1016/j.marpolbul.2010.07.030 | |
| dc.relation.references | Gani, K. M., Hlongwa, N., Abunama, T., Kumari, S., & Bux, F. (2021). Emerging contaminants in South African water environment- a critical review of their occurrence, sources and ecotoxicological risks. Chemosphere, 269, 128737. https://doi.org/10.1016/j.chemosphere.2020.128737 | |
| dc.relation.references | Garcés-Ordóñez, O., Saldarriaga-Vélez, J. F., Espinosa-Díaz, L. F., Patiño, A. D., Cusba, J., Canals, M., Mejía-Esquivia, K., Fragozo-Velásquez, L., Sáenz-Arias, S., Córdoba-Meza, T., & Thiel, M. (2022). Microplastic pollution in water, sediments and commercial fish species from Ciénaga Grande de Santa Marta lagoon complex, Colombian Caribbean. Science of The Total Environment, 829, 154643. https://doi.org/10.1016/j.scitotenv.2022.154643 | |
| dc.relation.references | Ghuge, S. A., Nikalje, G. C., Kadam, U. S., Suprasanna, P., & Hong, J. C. (2023). Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. Journal of Hazardous Materials, 450, 131039. https://doi.org/10.1016/j.jhazmat.2023.131039 | |
| dc.relation.references | Gil, M. J., Soto, A. M., Usma, J. I., & Gutiérrez, O. D. (2012). Contaminantes emergentes en aguas, efectos y posibles tratamientos. Producción + Limpia, 7(2), 52-73. | |
| dc.relation.references | Gogoi, A., Mazumder, P., Tyagi, V. K., Tushara Chaminda, G. G., An, A. K., & Kumar, M. (2018). Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable Development, 6, 169-180. https://doi.org/10.1016/j.gsd.2017.12.009 | |
| dc.relation.references | González-Mariño, I., Quintana, J. B., Rodríguez, I., González-Díez, M., & Cela, R. (2012). Screening and Selective Quantification of Illicit Drugs in Wastewater by Mixed-Mode Solid-Phase Extraction and Quadrupole-Time-of-Flight Liquid Chromatography–Mass Spectrometry. Analytical Chemistry, 84(3), 1708-1717. https://doi.org/10.1021/ac202989e | |
| dc.relation.references | Gottschalk, F., Sun, T., & Nowack, B. (2013). Environmental concentrations of engineered nanomaterials: Review of modeling and analytical studies. Environmental Pollution, 181, 287-300. https://doi.org/10.1016/j.envpol.2013.06.003 | |
| dc.relation.references | Graves, S. D., Kidd, K. A., Batchelar, K. L., Cowie, A. M., O’Driscoll, N. J., & Martyniuk, C. J. (2017). Response of oxidative stress transcripts in the brain of wild yellow perch (Perca flavescens) exposed to an environmental gradient of methylmercury. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 192, 50-58. https://doi.org/10.1016/j.cbpc.2016.12.005 | |
| dc.relation.references | Hernández-Guzmán, F. A., Macías-Zamora, J. V., Ramírez-Álvarez, N., Alvarez-Aguilar, A., Quezada-Hernández, C., & Fonseca, A. P. (2017). Treated wastewater effluent as a source of pyrethroids and fipronil at Todos Santos Bay, Mexico: Its impact on sediments and organisms. Environmental Toxicology and Chemistry, 36(11), 3057-3064. https://doi.org/10.1002/etc.3875 | |
| dc.relation.references | Huang, S. S.-Y., Hung, S. S. O., & Chan, H. M. (2014). Maintaining tissue selenium species distribution as a potential defense mechanism against methylmercury toxicity in juvenile white sturgeon (Acipenser transmontanus). Aquatic Toxicology, 156, 88-95. https://doi.org/10.1016/j.aquatox.2014.08.004 | |
| dc.relation.references | Huyck, R. W., Nagarkar, M., Olsen, N., Clamons, S. E., & Saha, M. S. (2015). Methylmercury exposure during early Xenopus laevis development affects cell proliferation and death but not neural progenitor specification. Neurotoxicology and Teratology, 47, 102-113. https://doi.org/10.1016/j.ntt.2014.11.010 | |
| dc.relation.references | Ide, A. H., Osawa, R. A., Marcante, L. O., da Costa Pereira, J., & de Azevedo, J. C. R. (2017). Occurrence of Pharmaceutical Products, Female Sex Hormones and Caffeine in a Subtropical Region in Brazil. CLEAN – Soil, Air, Water, 45(9), 1700334. https://doi.org/10.1002/clen.201700334 | |
| dc.relation.references | Jackson, W. A., Böhlke, J. K., Andraski, B. J., Fahlquist, L., Bexfield, L., Eckardt, F. D., Gates, J. B., Davila, A. F., McKay, C. P., Rao, B., Sevanthi, R., Rajagopalan, S., Estrada, N., Sturchio, N., Hatzinger, P. B., Anderson, T. A., Orris, G., Betancourt, J., Stonestrom, D., … Harvey, G. J. (2015). Global patterns and environmental controls of perchlorate and nitrate co-occurrence in arid and semi-arid environments. Geochimica et Cosmochimica Acta, 164, 502-522. https://doi.org/10.1016/j.gca.2015.05.016 | |
| dc.relation.references | Jaimes Urbina, J. A., & Vera Solano, J. A. (2020). Los contaminantes emergentes de las aguas residuales de la industria farmacéutica y su tratamiento por medio de la ozonización. Informador técnico, 84(2 (Julio-Diciembre)), 249-263. | |
| dc.relation.references | Jaiswal, A., Verma, A., & Jaiswal, P. (2018). Detrimental Effects of Heavy Metals in Soil, Plants, and Aquatic Ecosystems and in Humans. Journal of Environmental Pathology, Toxicology and Oncology, 37(3). https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018025348 | |
| dc.relation.references | Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., & Danquah, M. K. (2018). Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology, 9(1), 1050-1074. https://doi.org/10.3762/bjnano.9.98 | |
| dc.relation.references | Jones-Lepp, T. L., Sanchez, C., Alvarez, D. A., Wilson, D. C., & Taniguchi-Fu, R. L. (2012). Point sources of emerging contaminants along the Colorado River Basin: Source water for the arid Southwestern United States. Science of the Total Environment, 430, 237-245. https://doi.org/10.1016/j.scitotenv.2012.04.053 | |
| dc.relation.references | Kar, P., Shukla, K., Jain, P., Sathiyan, G., & Gupta, R. K. (2021). Semiconductor based photocatalysts for detoxification of emerging pharmaceutical pollutants from aquatic systems: A critical review. Nano Materials Science, 3(1), 25-46. https://doi.org/10.1016/j.nanoms.2020.11.001 | |
| dc.relation.references | Kataki, S., Chatterjee, S., Vairale, M. G., Dwivedi, S. K., & Gupta, D. K. (2021). Constructed wetland, an eco-technology for wastewater treatment: A review on types of wastewater treated and components of the technology (macrophyte, biolfilm and substrate). Journal of Environmental Management, 283, 111986. https://doi.org/10.1016/j.jenvman.2021.111986 | |
| dc.relation.references | Kayastha, P., Rzymski, P., Gołdyn, B., Nagwani, A. K., Fiałkowska, E., Pajdak-Stós, A., Sobkowiak, R., Robotnikowski, G., & Kaczmarek, Ł. (2024). Tolerance against exposure to solution of magnesium perchlorate in microinvertebrates. Zoological Journal of the Linnean Society, 200(1), 239-257. https://doi.org/10.1093/zoolinnean/zlad060 | |
| dc.relation.references | Khan, I., Ghani, A., Abd-Ur-Rehman, Awan, S. A., Noreen, A., & Khalid, I. (2016). Comparative Analysis of Heavy Metal Profile of Brassica campestris (L.) and Raphanus sativus (L.) Irrigated with Municipal Waste Water of Sargodha City. जर्नल ऑफ़ क्लिनिकल टॉक्सिकोलॉजी, 0(0). https://hindi.longdom.org/abstract/comparative-analysis-of-heavy-metal-profile-of-brassica-campestris-l-andraphanus-sativus-l-irrigated-with-municipal-wast-50960.html | |
| dc.relation.references | Khan, S. H., & Pathak, B. (2020). Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review. Environmental Nanotechnology, Monitoring & Management, 13, 100290. https://doi.org/10.1016/j.enmm.2020.100290 | |
| dc.relation.references | Khan, S., Naushad, Mu., Govarthanan, M., Iqbal, J., & Alfadul, S. M. (2022). Emerging contaminants of high concern for the environment: Current trends and future research. Environmental Research, 207, 112609. https://doi.org/10.1016/j.envres.2021.112609 | |
| dc.relation.references | Kim, Y.-I., Jeong, E., Lee, J.-Y., Chia, R. W., & Raza, M. (2023). Microplastic contamination in groundwater on a volcanic Jeju Island of Korea. Environmental Research, 226, 115682. https://doi.org/10.1016/j.envres.2023.115682 | |
| dc.relation.references | Klink, A. (2017). A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: Implication for phytoremediation. Environmental Science and Pollution Research, 24(4), 3843-3852. https://doi.org/10.1007/s11356-016-8135-6 | |
| dc.relation.references | Krey, A., Ostertag, S. K., & Chan, H. M. (2015). Assessment of neurotoxic effects of mercury in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) from the Canadian Arctic. Science of The Total Environment, 509-510, 237-247. https://doi.org/10.1016/j.scitotenv.2014.05.134 | |
| dc.relation.references | Kumar, A., Patra, C., Rajendran, H. K., & Narayanasamy, S. (2022). Activated carbon-chitosan based adsorbent for the efficient removal of the emerging contaminant diclofenac: Synthesis, characterization and phytotoxicity studies. Chemosphere, 307, 135806. https://doi.org/10.1016/j.chemosphere.2022.135806 | |
| dc.relation.references | Kumar, S., Prasad, S., Yadav, K. K., Shrivastava, M., Gupta, N., Nagar, S., Bach, Q.-V., Kamyab, H., Khan, S. A., Yadav, S., & Malav, L. C. (2019). Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches—A review. Environmental Research, 179, 108792. https://doi.org/10.1016/j.envres.2019.108792 | |
| dc.relation.references | Kumar, V., Kumar, M., & Prasad, R. (Eds.). (2018). Phytobiont and Ecosystem Restitution. Springer. https://doi.org/10.1007/978-981-13-1187-1 | |
| dc.relation.references | Kumarathilaka, P., Oze, C., Indraratne, S. P., & Vithanage, M. (2016). Perchlorate as an emerging contaminant in soil, water and food. Chemosphere, 150, 667-677. https://doi.org/10.1016/j.chemosphere.2016.01.109 | |
| dc.relation.references | Li, K., Du, P., Xu, Z., Gao, T., & Li, X. (2016). Occurrence of illicit drugs in surface waters in China. Environmental Pollution, 213, 395-402. https://doi.org/10.1016/j.envpol.2016.02.036 | |
| dc.relation.references | Li, Y., Wu, M., Li, H., Xue, H., Tao, J., Li, M., Wang, F., Li, Y., Wang, J., & Li, S. (2023). Current advances in microplastic contamination in aquatic sediment: Analytical methods, global occurrence, and effects on elemental cycling. TrAC Trends in Analytical Chemistry, 168, 117331. https://doi.org/10.1016/j.trac.2023.117331 | |
| dc.relation.references | Liao, Z., Cao, D., Gao, Z., & Zhang, S. (2020). Occurrence of perchlorate in processed foods manufactured in China. Food Control, 107, 106813. https://doi.org/10.1016/j.foodcont.2019.106813 | |
| dc.relation.references | Liao, Z., Chen, Z., Wu, Y., Xu, A., Liu, J., & Hu, H.-Y. (2021). Identification of development potentials and routes of wastewater treatment and reuse for Asian countries by key influential factors and prediction models. Resources, Conservation and Recycling, 168, 105259. https://doi.org/10.1016/j.resconrec.2020.105259 | |
| dc.relation.references | Lima, M. F. B., Fernandes, G. M., Oliveira, A. H. B., Morais, P. C. V., Marques, E. V., Santos, F. R., Nascimento, R. F., Swarthout, R. F., Nelson, R. K., Reddy, C. M., & Cavalcante, R. M. (2019). Emerging and traditional organic markers: Baseline study showing the influence of untraditional anthropogenic activities on coastal zones with multiple activities (Ceará coast, Northeast Brazil). Marine Pollution Bulletin, 139, 256-262. https://doi.org/10.1016/j.marpolbul.2018.12.006 | |
| dc.relation.references | López-Doval, J. C., Montagner, C. C., de Alburquerque, A. F., Moschini-Carlos, V., Umbuzeiro, G., & Pompêo, M. (2017). Nutrients, emerging pollutants and pesticides in a tropical urban reservoir: Spatial distributions and risk assessment. Science of The Total Environment, 575, 1307-1324. https://doi.org/10.1016/j.scitotenv.2016.09.210 | |
| dc.relation.references | Lozano, I., Pérez-Guzmán, C. J., Mora, A., Mahlknecht, J., Aguilar, C. L., & Cervantes-Avilés, P. (2022). Pharmaceuticals and personal care products in water streams: Occurrence, detection, and removal by electrochemical advanced oxidation processes. Science of The Total Environment, 827, 154348. https://doi.org/10.1016/j.scitotenv.2022.154348 | |
| dc.relation.references | Maffini, M. V., Trasande, L., & Neltner, T. G. (2016). Perchlorate and Diet: Human Exposures, Risks, and Mitigation Strategies. Current environmental health reports, 3(2), 107-117. https://doi.org/10.1007/s40572-016-0090-3 | |
| dc.relation.references | Magni, S., Della Torre, C., Garrone, G., D’Amato, A., Parenti, C. C., & Binelli, A. (2019). First evidence of protein modulation by polystyrene microplastics in a freshwater biological model. Environmental Pollution, 250, 407-415. https://doi.org/10.1016/j.envpol.2019.04.088 | |
| dc.relation.references | Magro, C., Mateus, E. P., Paz-Garcia, J. M., & Ribeiro, A. B. (2020). Emerging organic contaminants in wastewater: Understanding electrochemical reactors for triclosan and its by-products degradation. Chemosphere, 247, 125758. https://doi.org/10.1016/j.chemosphere.2019.125758 | |
| dc.relation.references | Mani, T., Hauk, A., Walter, U., & Burkhardt-Holm, P. (2015). Microplastics profile along the Rhine River. Scientific Reports, 5(1), 17988. https://doi.org/10.1038/srep17988 | |
| dc.relation.references | Marsden, P., Koelmans, A. A., Bourdon-Lacombe, J., Gouin, T., Anglada, L. D., Cunliffe, D., Jarvis, P., Fawell, J., & France, J. D. (2019). Microplastics in drinking water (p. ). World Health Organization. https://library.wur.nl/WebQuery/wurpubs/553048 | |
| dc.relation.references | Martini, G. de A., Montagner, C. C., Viveiros, W., Quinaglia, G. A., França, D. D., Munin, N. C. G., Lopes-Ferreira, M., Rogero, S. O., & Rogero, J. R. (2021). Emerging contaminant occurrence and toxic effects on zebrafish embryos to assess the adverse effects caused by mixtures of substances in the environment. Environmental Science and Pollution Research, 28(16), 20313-20329. https://doi.org/10.1007/s11356-020-11963-x | |
| dc.relation.references | Mattiske, D. M., & Pask, A. J. (2021). Endocrine disrupting chemicals in the pathogenesis of hypospadias; developmental and toxicological perspectives. Current Research in Toxicology, 2, 179-191. https://doi.org/10.1016/j.crtox.2021.03.004 | |
| dc.relation.references | Meffe, R., & de Bustamante, I. (2014). Emerging organic contaminants in surface water and groundwater: A first overview of the situation in Italy. Science of The Total Environment, 481, 280-295. https://doi.org/10.1016/j.scitotenv.2014.02.053 | |
| dc.relation.references | Meléndez-Marmolejo, J., García-Saavedra, Y., Galván-Romero, V., León-Martínez, L. D. de, Vargas-Berrones, K., Mejía-Saavedra, J., & Ramírez, R. F. (2020). Contaminantes emergentes. Problemática ambiental asociada al uso de antibióticos. Nuevas técnicas de detección, remediación y perspectivas de legislación en América Latina. Revista de Salud Ambiental, 20(1), Article 1. | |
| dc.relation.references | Miloloža, M., Bule, K., Ukić, Š., Cvetnić, M., Bolanča, T., Kušić, H., Bulatović, V. O., & Grgić, D. K. (2021). Ecotoxicological Determination of Microplastic Toxicity on Algae Chlorella sp.: Response Surface Modeling Approach. Water, Air, & Soil Pollution, 232(8), 327. https://doi.org/10.1007/s11270-021-05267-0 | |
| dc.relation.references | Miranda-Peña, L., Urquijo, M., Arana, V. A., García-Alzate, R., García-Alzate, C. A., & Trilleras, J. (2023). Microplastics Occurrence in Fish from Tocagua Lake, Low Basin Magdalena River, Colombia. Diversity, 15(7), Article 7. https://doi.org/10.3390/d15070821 | |
| dc.relation.references | Monroy-Licht, A. (2023). Effect of phosphate on arsenic species uptake in plants under hydroponic conditions. Journal of Plant Research, 136(5), 729-742. https://doi.org/10.1007/s10265-022-01381-0 | |
| dc.relation.references | Monroy-Licht, A., Méndez-Cuadro, D., & Olivero-Verbel, J. (2023). Elemental mercury accumulation in Eichhornia crassipes (Mart.) Solms-Laubach. Environmental Science and Pollution Research, 30(4), 9898-9913. https://doi.org/10.1007/s11356-022-22521-y | |
| dc.relation.references | Mukhopadhyay, A., Duttagupta, S., & Mukherjee, A. (2022). Emerging organic contaminants in global community drinking water sources and supply: A review of occurrence, processes and remediation. Journal of Environmental Chemical Engineering, 10(3), 107560. https://doi.org/10.1016/j.jece.2022.107560 | |
| dc.relation.references | Narayanan, M., & Ma, Y. (2023). Metal tolerance mechanisms in plants and microbe-mediated bioremediation. Environmental Research, 222, 115413. https://doi.org/10.1016/j.envres.2023.115413 | |
| dc.relation.references | Navarro, I., de la Torre, A., Sanz, P., Porcel, M. Á., Pro, J., Carbonell, G., & Martínez, M. de los Á. (2017). Uptake of perfluoroalkyl substances and halogenated flame retardants by crop plants grown in biosolids-amended soils. Environmental Research, 152, 199-206. https://doi.org/10.1016/j.envres.2016.10.018 | |
| dc.relation.references | Navarro, I., de la Torre, A., Sanz, P., Pro, J., Carbonell, G., & Martínez, M. de los Á. (2016). Bioaccumulation of emerging organic compounds (perfluoroalkyl substances and halogenated flame retardants) by earthworm in biosolid amended soils. Environmental Research, 149, 32-39. https://doi.org/10.1016/j.envres.2016.05.004 | |
| dc.relation.references | Nguyen, M.-K., Lin, C., Nguyen, H.-L., Le, V.-R., Kl, P., Singh, J., Chang, S. W., Um, M.-J., & Nguyen, D. D. (2023). Emergence of microplastics in the aquatic ecosystem and their potential effects on health risks: The insights into Vietnam. Journal of Environmental Management, 344, 118499. https://doi.org/10.1016/j.jenvman.2023.118499 | |
| dc.relation.references | Niziński, P., Błażewicz, A., Kończyk, J., & Michalski, R. (2021). Perchlorate – properties, toxicity and human health effects: An updated review. Reviews on Environmental Health, 36(2), 199-222. https://doi.org/10.1515/reveh-2020-0006 | |
| dc.relation.references | Noguera-Oviedo, K., & Aga, D. S. (2016). Lessons learned from more than two decades of research on emerging contaminants in the environment. Journal of Hazardous Materials, 316, 242-251. https://doi.org/10.1016/j.jhazmat.2016.04.058 | |
| dc.relation.references | Palacios-Torres, Y., de la Rosa, J. D., & Olivero-Verbel, J. (2020). Trace elements in sediments and fish from Atrato River: An ecosystem with legal rights impacted by gold mining at the Colombian Pacific. Environmental Pollution, 256, 113290. https://doi.org/10.1016/j.envpol.2019.113290 | |
| dc.relation.references | Patel, P., Raju, N. J., Reddy, B. C. S. R., Suresh, U., Sankar, D. B., & Reddy, T. V. K. (2018). Heavy metal contamination in river water and sediments of the Swarnamukhi River Basin, India: Risk assessment and environmental implications. Environmental Geochemistry and Health, 40(2), 609-623. https://doi.org/10.1007/s10653-017-0006-7 | |
| dc.relation.references | Pinho, I., Amezcua, F., Rivera, J. M., Green-Ruiz, C., Piñón-Colin, T. de J., & Wakida, F. (2022). First report of plastic contamination in batoids: Plastic ingestion by Haller’s Round Ray (Urobatis halleri) in the Gulf of California. Environmental Research, 211, 113077. https://doi.org/10.1016/j.envres.2022.113077 | |
| dc.relation.references | Pizzochero, A. C., de la Torre, A., Sanz, P., Navarro, I., Michel, L. N., Lepoint, G., Das, K., Schnitzler, J. G., Chenery, S. R., McCarthy, I. D., Malm, O., Dorneles, P. R., & Martínez, M. Á. (2019). Occurrence of legacy and emerging organic pollutants in whitemouth croakers from Southeastern Brazil. Science of The Total Environment, 682, 719-728. https://doi.org/10.1016/j.scitotenv.2019.05.213 | |
| dc.relation.references | Pogrzeba, M., Ciszek, D., Galimska-Stypa, R., Nowak, B., & Sas-Nowosielska, A. (2016). Ecological strategy for soil contaminated with mercury. Plant and Soil, 409(1), 371-387. https://doi.org/10.1007/s11104-016-2936-8 | |
| dc.relation.references | Propp, V. R., De Silva, A. O., Spencer, C., Brown, S. J., Catingan, S. D., Smith, J. E., & Roy, J. W. (2021). Organic contaminants of emerging concern in leachate of historic municipal landfills. Environmental Pollution, 276, 116474. https://doi.org/10.1016/j.envpol.2021.116474 | |
| dc.relation.references | Quadra, G. R., Li, Z., Barros, N., Roland, F., & Sobek, A. (2021). Micropollutants in four Brazilian water reservoirs. Limnologica, 90, 125902. https://doi.org/10.1016/j.limno.2021.125902 | |
| dc.relation.references | Raihan, S. M., Moniruzzaman, M., Park, Y., Lee, S., & Bai, S. C. (2020). Evaluation of Dietary Organic and Inorganic Mercury Threshold Levels on Induced Mercury Toxicity in a Marine Fish Model. Animals, 10(3), Article 3. https://doi.org/10.3390/ani10030405 | |
| dc.relation.references | Reichert, G., Hilgert, S., Fuchs, S., & Azevedo, J. C. R. (2019). Emerging contaminants and antibiotic resistance in the different environmental matrices of Latin America. Environmental Pollution, 255, 113140. https://doi.org/10.1016/j.envpol.2019.113140 | |
| dc.relation.references | Rogers, E. R., Zalesny, R. S., & Lin, C.-H. (2021). A systematic approach for prioritizing landfill pollutants based on toxicity: Applications and opportunities. Journal of Environmental Management, 284, 112031. https://doi.org/10.1016/j.jenvman.2021.112031 | |
| dc.relation.references | Rojas-Luna, R. A., Oquendo-Ruiz, L., García-Alzate, C. A., Arana, V. A., García-Alzate, R., & Trilleras, J. (2023). Identification, Abundance, and Distribution of Microplastics in Surface Water Collected from Luruaco Lake, Low Basin Magdalena River, Colombia. Water, 15(2), Article 2. https://doi.org/10.3390/w15020344 | |
| dc.relation.references | Roveri, V., Guimarães, L. L., Toma, W., & Correia, A. T. (2021). Occurrence and ecological risk assessment of pharmaceuticals and cocaine in the urban drainage channels of Santos beaches (São Paulo, Brazil): A neglected, but sensitive issue. Environmental Science and Pollution Research, 28(46), 65595-65609. https://doi.org/10.1007/s11356-021-15249-8 | |
| dc.relation.references | Rzymski, P., Losiak, A., Heinz, J., Szukalska, M., Florek, E., Poniedziałek, B., Schulze-Makuch, D. (2024). Perchlorates on Mars: Occurrence and implications for putative life on the Red Planet. Icarus, 116246. https://doi.org/10.1016/j.icarus.2024.116246 | |
| dc.relation.references | Santos, A. V., Couto, C. F., Lebron, Y. A. R., Moreira, V. R., Foureaux, A. F. S., Reis, E. O., Santos, L. V. de S., de Andrade, L. H., Amaral, M. C. S., & Lange, L. C. (2020). Occurrence and risk assessment of pharmaceutically active compounds in water supply systems in Brazil. Science of The Total Environment, 746, 141011. https://doi.org/10.1016/j.scitotenv.2020.141011 | |
| dc.relation.references | Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., Rehim, A., & Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710-721. https://doi.org/10.1016/j.chemosphere.2016.12.116 | |
| dc.relation.references | Seralini, G.-E., & Jungers, G. (2021). Endocrine disruptors also function as nervous disruptors and can be renamed endocrine and nervous disruptors (ENDs). Toxicology Reports, 8, 1538-1557. https://doi.org/10.1016/j.toxrep.2021.07.014 | |
| dc.relation.references | Sierra-Marquez, L., Espinosa-Araujo, J., Atencio-Garcia, V., & Olivero-Verbel, J. (2019). Effects of cadmium exposure on sperm and larvae of the neotropical fish Prochilodus magdalenae. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP, 225, 108577. https://doi.org/10.1016/j.cbpc.2019.108577 | |
| dc.relation.references | Sotão Neto, B. M. T., Combi, T., Taniguchi, S., Albergaria-Barbosa, A. C. R., Ramos, R. B., Figueira, R. C. L., & Montone, R. C. (2020). Persistent organic pollutants (POPs) and personal care products (PCPs) in the surface sediments of a large tropical bay (Todos os Santos Bay, Brazil). Marine Pollution Bulletin, 161, 111818. https://doi.org/10.1016/j.marpolbul.2020.111818 | |
| dc.relation.references | Souza, I. C., Morozesk, M., Azevedo, V. C., Mendes, V. A. S., Duarte, I. D., Rocha, L. D., Matsumoto, S. T., Elliott, M., Baroni, M. V., Wunderlin, D. A., Monferrán, M. V., & Fernandes, M. N. (2021). Trophic transfer of emerging metallic contaminants in a neotropical mangrove ecosystem food web. Journal of Hazardous Materials, 408, 124424. https://doi.org/10.1016/j.jhazmat.2020.124424 | |
| dc.relation.references | Starling, M. C. V. M., Amorim, C. C., & Leão, M. M. D. (2019). Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil. Journal of Hazardous Materials, 372, 17-36. https://doi.org/10.1016/j.jhazmat.2018.04.043 | |
| dc.relation.references | Steinmaus, C. M. (2016). Perchlorate in Water Supplies: Sources, Exposures, and Health Effects. Current Environmental Health Reports, 3(2), 136-143. https://doi.org/10.1007/s40572-016-0087-y | |
| dc.relation.references | Sun, W. H., Jiang, Y. X., & Li, X. (2013). Research of the Evaluation on Heavy-Metal Pollution in Rice by Sewage Irrigation. Applied Mechanics and Materials, 295-298, 1594-1599. https://doi.org/10.4028/www.scientific.net/AMM.295-298.1594 | |
| dc.relation.references | Tabe, S., Pileggi, V., Nowierski, M., Kleywegt, S., & Yang, P. (2016). Occurrence, removal, and environmental impacts of emerging contaminants detected in water and wastewater in Southern Ontario—Part I: occurrence and removal. Water Practice and Technology, 11(2), 298-314. https://doi.org/10.2166/wpt.2016.035 | |
| dc.relation.references | Tejeda-Benitez, L., Flegal, R., Odigie, K., & Olivero-Verbel, J. (2016). Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia. Environmental Pollution, 212, 238-250. https://doi.org/10.1016/j.envpol.2016.01.057 | |
| dc.relation.references | Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. Molecular, clinical and environmental toxicology: volume 3: environmental toxicology, 133-164. https://doi.org/10.1007/978-3-7643-8340-4_6 | |
| dc.relation.references | Tran, N. H., Reinhard, M., & Gin, K. Y.-H. (2018). Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review. Water Research, 133, 182-207. https://doi.org/10.1016/j.watres.2017.12.029 | |
| dc.relation.references | Valcárcel, Y., Martínez, F., González-Alonso, S., Segura, Y., Catalá, M., Molina, R., Montero-Rubio, J. C., Mastroianni, N., López de Alda, M., Postigo, C., & Barceló, D. (2012). Drugs of abuse in surface and tap waters of the Tagus River basin: Heterogeneous photo-Fenton process is effective in their degradation. Environment International, 41, 35-43. https://doi.org/10.1016/j.envint.2011.12.006 | |
| dc.relation.references | Valdés, M. E., Santos, L. H. M. L. M., Rodríguez Castro, M. C., Giorgi, A., Barceló, D., Rodríguez-Mozaz, S., & Amé, M. V. (2021). Distribution of antibiotics in water, sediments and biofilm in an urban river (Córdoba, Argentina, LA). Environmental Pollution, 269, 116133. https://doi.org/10.1016/j.envpol.2020.116133 | |
| dc.relation.references | Vergilio, C. S., Carvalho, C. E. V., & Melo, E. J. T. (2015). Mercury-induced dysfunctions in multiple organelles leading to cell death. Toxicology in Vitro, 29(1), 63-71. https://doi.org/10.1016/j.tiv.2014.09.006 | |
| dc.relation.references | Vimalkumar, K., Sangeetha, S., Felix, L., Kay, P., & Pugazhendhi, A. (2022). A systematic review on toxicity assessment of persistent emerging pollutants (EPs) and associated microplastics (MPs) in the environment using the Hydra animal model. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 256, 109320. https://doi.org/10.1016/j.cbpc.2022.109320 | |
| dc.relation.references | von Ameln Lovison, O., Jank, L., de Souza, W. M., Ramalho Guerra, R., Lamas, A. E., da Costa Ballestrin, R. A., da Silva Morais Hein, C., da Silva, T. C. B., Corção, G., & Martins, A. F. (2021). Identification of pesticides in water samples by solid-phase extraction and liquid chromatography–electrospray ionization mass spectrometry. Water Environment Research, 93(11), 2670-2680. https://doi.org/10.1002/wer.1621 | |
| dc.relation.references | Wang, X., Li, C., Liu, K., Zhu, L., Song, Z., & Li, D. (2020). Atmospheric microplastic over the South China Sea and East Indian Ocean: Abundance, distribution and source. Journal of Hazardous Materials, 389, 121846. https://doi.org/10.1016/j.jhazmat.2019.121846 | |
| dc.relation.references | Wilkinson, J., Hooda, P. S., Barker, J., Barton, S., & Swinden, J. (2017). Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environmental Pollution, 231, 954-970. https://doi.org/10.1016/j.envpol.2017.08.032 | |
| dc.relation.references | Wyatt, L. H., Luz, A. L., Cao, X., Maurer, L. L., Blawas, A. M., Aballay, A., Pan, W. K. Y., & Meyer, J. N. (2017). Effects of methyl and inorganic mercury exposure on genome homeostasis and mitochondrial function in Caenorhabditis elegans. DNA Repair, 52, 31-48. https://doi.org/10.1016/j.dnarep.2017.02.005 | |
| dc.relation.references | Yang, M., & Her, N. (2011). Perchlorate in Soybean Sprouts (Glycine max L. Merr.), Water Dropwort (Oenanthe stolonifera DC.), and Lotus (Nelumbo nucifera Gaertn.) Root in South Korea. Journal of Agricultural and Food Chemistry, 59(13), 7490-7495. https://doi.org/10.1021/jf2009638 | |
| dc.relation.references | Yu, H., Chen, Q., Qiu, W., Ma, C., Gao, Z., Chu, W., & Shi, H. (2022). Concurrent water- and foodborne exposure to microplastics leads to differential microplastic ingestion and neurotoxic effects in zebrafish. Water Research, 219, 118582. https://doi.org/10.1016/j.watres.2022.118582 | |
| dc.relation.references | Zini, L. B., & Gutterres, M. (2021). Chemical contaminants in Brazilian drinking water: A systematic review. Journal of Water and Health, 19(3), 351-369. https://doi.org/10.2166/wh.2021.264 | |
| dc.relation.references | Zhu, L., Jiang, C., Panthi, S., Allard, S. M., Sapkota, A. R., & Sapkota, A. (2021). Impact of high precipitation and temperature events on the distribution of emerging contaminants in surface water in the Mid-Atlantic, United States. Science of the Total Environment, 755, 142552. https://doi.org/10.1016/j.scitotenv.2020.142552 | |
| dc.rights | Prohibida la reproducción tptal o parcial, sin autorización de los autores, declaración de derechos de autor. | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.coar | http://purl.org/coar/access_right/c_abf2 | |
| dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) | |
| dc.rights.uri | https://creativecommons.org/licenses/by-nc-sa/4.0/ | |
| dc.subject.armarc | Metales pesados -- Toxicologí | |
| dc.subject.armarc | Calidad del agua -- Monitoreo | |
| dc.subject.armarc | Disruptores endocrinos | |
| dc.subject.ddc | 620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria | |
| dc.subject.lemb | Water -- Pollution | |
| dc.subject.lemb | Heavy metals -- Toxicology | |
| dc.subject.lemb | Emerging contaminants | |
| dc.subject.lemb | Pharmaceuticals -- Environmental aspects | |
| dc.subject.lemb | Microplastics -- Environmental impact | |
| dc.subject.lemb | Water quality -- Monitorin | |
| dc.subject.lemb | Endocrine disrupting chemical | |
| dc.subject.lemb | Agua -- Contaminación | |
| dc.subject.lemb | Productos farmacéuticos -- Aspectos ambientales | |
| dc.subject.lemb | Contaminantes emergentes | |
| dc.subject.lemb | Microplásticos -- Impacto ambiental | |
| dc.subject.ocde | 1. Ciencias Naturales | |
| dc.subject.ods | ODS 3: Salud y bienestar. Garantizar una vida sana y promover el bienestar de todos a todas las edades | |
| dc.subject.proposal | Aquatic toxicology | |
| dc.subject.proposal | Endocrine disruption | |
| dc.subject.proposal | Emerging pollutants | |
| dc.subject.proposal | Tropical ecotoxicology | |
| dc.title | Emerging and traditional pollutants in water resources: A perspective on the American Continent | |
| dc.type | Artículo de revista | |
| dc.type.coar | http://purl.org/coar/resource_type/c_18cf | |
| dc.type.coarversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/article | |
| dc.type.redcol | http://purl.org/redcol/resource_type/ART | |
| dc.type.version | info:eu-repo/semantics/publishedVersion | |
| dcterms.audience | Comunidad Científica nacional e internacional. | |
| dspace.entity.type | Publication | |
| relation.isAuthorOfPublication | 74ceb186-b60b-4210-9548-9a89e1a8f37b | |
| relation.isAuthorOfPublication | f428bf31-0676-48a7-b388-35f7f51dbbfa | |
| relation.isAuthorOfPublication.latestForDiscovery | 74ceb186-b60b-4210-9548-9a89e1a8f37b |