Publicación: Power quality detection and classification using wavelet and support vector machine
Portada
Cargando...
Citas bibliográficas
Código QR
Métricas
Autor corporativo
Recolector de datos
Otros/Desconocido
Director audiovisual
Editor
Tipo de Material
Fecha
Citación
Garrido-Arévalo, V., Gil-González, W. and Holguin, M., 2020. Power quality detection and classification using wavelet and support vector machine. Journal of Physics: Conference Series, 1448, p.012002.
Título de serie/ reporte/ volumen/ colección
Es Parte de
Resumen en español
This work presents the identification and classification of various disturbances that affect the quality of energy, seen as the quality of the voltage wave (harmonics, sag, swell and flicker). For this, the wavelet transform is used, which allows to have characteristic patterns as input signals of the support vector machine, these are evaluated in their different configurations, bi-class, minimum output coding, error correcting output and one versus all. For all of them, in the first instance they were trained with 200 samples, then the results were validated with 100 samples and finally the evaluation was made with 500 different samples, obtaining that the best result is presented with the minimum output coding configuration.
PDF
FLIP 
