Publicación:
An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm

datacite.rightshttp://purl.org/coar/access_right/c_14cbspa
dc.audienceInvestigadoresspa
dc.contributor.authorGrisales-Noreña, Luis Fernando
dc.contributor.authorRamos-Paja, Carlos Andrés
dc.contributor.authorMontoya Giraldo, Oscar Danilo
dc.date.accessioned2020-10-29T21:20:25Z
dc.date.available2020-10-29T21:20:25Z
dc.date.issued2020-06-16
dc.date.submitted2020-10-29
dc.description.abstractThis paper proposes an energy management system (EMS) for the day-ahead dispatch of battery storage systems (BSS) under a distributed generation environment for direct current (DC) networks, with the main objective of reducing the cost of the energy purchased to the utility grid. This approach considers the state-of-charge (SOC) of the BSS and the production variation of the renewable generators, in particular of wind and photovoltaic technologies, and the variations in the power consumption and energy costs. The proposed EMS uses a master-slave strategy formed by a parallel implementation of the particle swarm optimizer (PPSO) and a multi-period power flow method based on successive approximations (SA), with the aim of achieving the optimal daily operation of the BSS. The objective function selected for the optimization was the reduction of the energy purchasing costs, also including the power balance, devices capabilities and voltage regulation. The effectiveness of the EMS is evaluated in a test system of 21 buses, comparing the solution quality and speed with three optimization techniques published in literature: a black hole optimizer, a continuous genetic algorithm with matrix structure, and a traditional Chu & Beasley genetic algorithm. In addition, two simulation scenarios were used to identify the optimal final SOC conditions for the BSS. Finally, the results show that the proposed EMS provides the best trade-off between quality solution and speed. The simulations are conducted in MATLAB software using sequential quadratic programming.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationGrisales-Noreña, Luis & Montoya Giraldo, Oscar & Ramos-Paja, Carlos. (2020). An energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithm. Journal of Energy Storage. 29. 101488. 10.1016/j.est.2020.101488.spa
dc.identifier.doi10.1016/j.est.2020.101488
dc.identifier.instnameUniversidad Tecnológica de Bolívarspa
dc.identifier.issn2352-152X
dc.identifier.reponameRepositorio Universidad Tecnológica de Bolívarspa
dc.identifier.urihttps://hdl.handle.net/20.500.12585/9502
dc.identifier.urlhttps://www.sciencedirect.com/science/article/abs/pii/S2352152X19314252
dc.language.isoengspa
dc.publisher.placeCartagena de Indiasspa
dc.publisher.sedeCampus Tecnológicospa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.sourceJournal of Energy Storage Volume 29, June 2020, 101488spa
dc.subject.keywordsDirect current networksspa
dc.subject.keywordsDistributed generationspa
dc.subject.keywordsEnergy storage systemsspa
dc.subject.keywordsParallel processingspa
dc.subject.keywordsOptimal power flowspa
dc.subject.keywordsMinimization of energy costspa
dc.titleAn energy management system for optimal operation of BSS in DC distributed generation environments based on a parallel PSO algorithmspa
dc.typeArtículospa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dspace.entity.typePublication
oaire.resourcetypehttp://purl.org/coar/resource_type/c_2df8fbb1spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
relation.isAuthorOfPublicationd9da408b-34a8-4c9e-8469-43239d9d590b
relation.isAuthorOfPublication.latestForDiscoveryd9da408b-34a8-4c9e-8469-43239d9d590b

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
39.pdf
Tamaño:
84.19 KB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.11 KB
Formato:
Item-specific license agreed upon to submission
Descripción: